import os if os.getenv('SPACES_ZERO_GPU') == "true": os.environ['SPACES_ZERO_GPU'] = "1" os.environ['K_DIFFUSION_USE_COMPILE'] = "0" import spaces import cv2 import gradio as gr import torch from basicsr.archs.srvgg_arch import SRVGGNetCompact from basicsr.utils import img2tensor, tensor2img from facexlib.utils.face_restoration_helper import FaceRestoreHelper from realesrgan.utils import RealESRGANer from lightning_models.mmse_rectified_flow import MMSERectifiedFlow torch.set_grad_enabled(False) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") os.makedirs('pretrained_models', exist_ok=True) realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth' if not os.path.exists(realesr_model_path): os.system( "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth") # background enhancer with RealESRGAN model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') half = True if torch.cuda.is_available() else False upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device) face_helper_dummy = FaceRestoreHelper( 1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=device, model_rootpath=None) os.makedirs('output', exist_ok=True) def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device): source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0) dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) x_t_next = source_dist_samples.clone() t_one = torch.ones(x.shape[0], device=device) for i in range(num_flow_steps): num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype) x_t_next = x_t_next.clone() + v_t_next * dt return x_t_next.clip(0, 1).to(torch.float32) def enhance_face(img, face_helper, has_aligned, only_center_face=False, paste_back=True, scale=2): face_helper.clean_all() if has_aligned: # the inputs are already aligned img = cv2.resize(img, (512, 512)) face_helper.cropped_faces = [img] else: face_helper.read_image(img) face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5) # eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels # TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations. # align and warp each face face_helper.align_warp_face() # face restoration for cropped_face in face_helper.cropped_faces: # prepare data cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) try: dummy_x = torch.zeros_like(cropped_face_t) output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, 25, device) restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(0, 1)) print("\tSucceeded PMRF out") except RuntimeError as error: print(f'\tFailed inference for PMRF: {error}.') restored_face = cropped_face restored_face = restored_face.astype('uint8') face_helper.add_restored_face(restored_face) if not has_aligned and paste_back: # upsample the background if upsampler is not None: # Now only support RealESRGAN for upsampling background bg_img = upsampler.enhance(img, outscale=scale)[0] else: bg_img = None face_helper.get_inverse_affine(None) # paste each restored face to the input image restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img) return face_helper.cropped_faces, face_helper.restored_faces, restored_img else: return face_helper.cropped_faces, face_helper.restored_faces, None @spaces.GPU() def inference(img, aligned, scale, num_steps): if scale > 4: scale = 4 # avoid too large scale value img = cv2.imread(img, cv2.IMREAD_UNCHANGED) if len(img.shape) == 3 and img.shape[2] == 4: img_mode = 'RGBA' elif len(img.shape) == 2: # for gray inputs img_mode = None img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) else: img_mode = None h, w = img.shape[0:2] if h > 3500 or w > 3500: print('Image size too large.') return None, None if h < 300: img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) face_helper = FaceRestoreHelper( scale, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=device, model_rootpath=None) has_aligned = True if aligned == 'Yes' else False _, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False, paste_back=True) if has_aligned: output = restored_aligned[0] else: output = restored_img # try: # if scale != 2: # interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 # h, w = img.shape[0:2] # output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) # except Exception as error: # print('Wrong scale input.', error) if img_mode == 'RGBA': # RGBA images should be saved in png format extension = 'png' else: extension = 'jpg' save_path = f'output/out.{extension}' cv2.imwrite(save_path, output) output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) return output, save_path # except Exception as error: # print('global exception', error) # return None, None css = r""" """ demo = gr.Interface( inference, [ gr.Image(type="filepath", label="Input"), gr.Radio(['Yes', 'No'], type="value", value='aligned', label='Is the input an aligned face image?'), gr.Number(label="Rescaling factor (the rescaling factor of the final image)", value=2), gr.Number(label="Number of flow steps. A higher value should result in better image quality, but this comes at the expense of runtime.", value=25), ], [ gr.Image(type="numpy", label="Output"), gr.File(label="Download the output image") ], ) demo.queue() demo.launch(state_session_capacity=15)