File size: 11,508 Bytes
c2522bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import torch
import os
import streamlit as st
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import altair as alt

from PIL import Image
from transformers import YolosFeatureExtractor, YolosForObjectDetection
from torchvision.transforms import ToTensor, ToPILImage

st.set_page_config(layout="wide")


def rgb_to_hex(rgb):
    """Converts an RGB tuple to an HTML-style Hex string."""
    hex_color = "#{:02x}{:02x}{:02x}".format(int(rgb[0] * 255), int(rgb[1] * 255), int(rgb[2] * 255))
    return hex_color

## CODE TO CLEAN IMAGES
def fix_channels(t):
    if len(t.shape) == 2:
        return ToPILImage()(torch.stack([t for i in (0, 0, 0)]))
    if t.shape[0] == 4:
        return ToPILImage()(t[:3])
    if t.shape[0] == 1:
        return ToPILImage()(torch.stack([t[0] for i in (0, 0, 0)]))
    return ToPILImage()(t)

## CODE FOR PLOTS WITH BOUNDING BOXES
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
        [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]

def idx_to_text(i):
    if i in list(dict_cats_final.keys()):
        return dict_cats_final[i.item()]
    else:
        return False

# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
            (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=1)

def rescale_bboxes(out_bbox, size):
    img_w, img_h = size
    b = box_cxcywh_to_xyxy(out_bbox)
    b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
    return b

def plot_results(pil_img, prob, boxes):
    fig = plt.figure(figsize=(16,10))
    plt.imshow(pil_img)
    ax = plt.gca()
    
    colors = COLORS * 100
    colors_used = []

    for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
        cl = p.argmax()
        p_max = p.max().detach().numpy()
        if idx_to_text(cl) is False:
            pass
            
        else:    
            colors_used.append(rgb_to_hex(c))
            ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
                                    fill=False, color=c, linewidth=3))
            ax.text(xmin, ymin, f"{idx_to_text(cl)}", fontsize=10,
                    bbox=dict(facecolor=c, alpha=0.8))
            
    plt.axis('off')
    
    plt.savefig("results_od.png", 
            bbox_inches ="tight") 
    #plt.show()
    st.image("results_od.png")

    return colors_used


def return_probas(outputs, threshold):
    probas = outputs.logits.softmax(-1)[0, :, :-1]
    probas = probas[:][:,list(dict_cats_final.keys())]
    keep = probas.max(-1).values > threshold

    return probas, keep



# def visualize_predictions(image, outputs, threshold):
# # keep only predictions with confidence >= threshold
#     # convert predicted boxes from [0; 1] to image scales
#     bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size)

#     # plot results
#     plot_results(image, probas[keep], bboxes_scaled)

#     return probas[keep]


def visualize_probas(probas, threshold, colors):
    label_df = pd.DataFrame({"label":probas.max(-1).indices.detach().numpy(),
                             "proba":probas.max(-1).values.detach().numpy()})
    
    cats_dict = dict(zip(np.arange(0,len(cats)),cats))
    label_df["label"] = label_df["label"].map(cats_dict)
    top_label_df = label_df.loc[label_df["proba"]>threshold].round(2)
    top_label_df["colors"] = colors
    top_label_df.sort_values(by=["proba"], ascending=False, inplace=True)

    st.dataframe(top_label_df.drop(columns=["colors"]))
    
    mode_func = lambda x: x.mode().iloc[0]
    top_label_df_agg = top_label_df.groupby("label").agg({"proba":"mean", "colors":mode_func})
    top_label_df_agg = top_label_df_agg.reset_index().sort_values(by=["proba"], ascending=False)

    chart = alt.Chart(top_label_df_agg).mark_bar().encode(x="proba", y="label", 
                                                          color=alt.Color('colors:N', scale=None)).interactive()
    #st.altair_chart(chart)





######################################################################################################################################

st.markdown("# Object Detection")

st.markdown("### What is Object Detection ?")
           
#st.markdown("""Object detection involves **identifying** and **locating objects** within an image or video frame through bounding boxes. """)
st.info("""Object Detection is a computer vision task in which the goal is to **detect** and **locate objects** of interest in an image or video. 
            The task involves identifying the position and boundaries of objects (or **bounding boxes**) in an image, and classifying the objects into different categories.""")


st.markdown("Here is an example of Object Detection for Traffic Analysis.")
#image_od = Image.open('images/od_2.png')
#st.image(image_od, width=600)
st.video(data='https://www.youtube.com/watch?v=PVCGDoTZHaI')

st.markdown(" ")

st.markdown("""Common applications of Object Detection include:
- **Autonomous Vehicles** :car: : Object detection is crucial for self-driving cars to track pedestrians, cyclists, other vehicles, and obstacles on the road.
- **Retail** 🏬 : Implementing smart shelves and checkout systems that use object detection to track inventory and monitor stock levels.
- **Healthcare** πŸ‘¨β€βš•οΈ: Detecting and tracking anomalies in medical images, such as tumors or abnormalities, for diagnostic purposes or prevention.
- **Manufacturing** 🏭: Quality control on production lines by detecting defects or irregularities in manufactured products. Ensuring workplace safety by monitoring the movement of workers and equipment.
- **Fashion and E-commerce** πŸ›οΈ : Improving virtual try-on experiences by accurately detecting and placing virtual clothing items on users.
""")


st.markdown("  ")
st.divider()

st.markdown("### Fashion object detection πŸ‘—")
st.markdown(""" The following example showcases the use of an **Object detection algorithm** for clothing items/features on fashion images. <br>
            This use case can be seen as an application of AI models for Fashion and E-commerce. <br>
            """, unsafe_allow_html=True)

st.image("images/od_fashion.jpg", width=700)

#images_dior = [os.path.join("data/dior_show",url) for url in os.listdir("data/dior_show") if url != "results"]
#st.image(images_dior, width=250, caption=[file for file in os.listdir("data/dior_show") if file != "results"])

st.markdown("  ")
#st.markdown("##### Select an image")


############## SELECT AN IMAGE ###############

st.markdown("#### Step 1: Select an image")
st.markdown("""First, select the image you want to apply the object detection model to. 
            The model was trained to detect clothing items on a single person. If your image has more than individuals, the model will ignore one of them in its detection.""")

image_ = None
select_image_box = st.radio(
    "",
    ["Choose an existing image", "Load your own image"],
    index=None, label_visibility="collapsed")

if select_image_box == "Choose an existing image":
    fashion_images_path = r"data/pinterest"
    list_images = os.listdir(fashion_images_path)
    image_ = st.selectbox("", list_images, label_visibility="collapsed")
    
    if image_ is not None:
        image_ = os.path.join(fashion_images_path,image_)
        st.markdown("You've selected the following image:")
        st.image(image_, width=300)

elif select_image_box == "Load your own image":
    image_ = st.file_uploader("Load an image here", 
                                key="OD_dior", type=['jpg','jpeg','png'], label_visibility="collapsed")
    
    st.warning("""**Note**: The model tends to perform better with images of people/clothing items facing forward. 
           Choose this type of image if you want optimal results.""")

    if image_ is not None:
        st.image(Image.open(image_), width=300)


st.markdown("  ")
st.markdown("  ")



########## SELECT AN ELEMENT TO DETECT ##################

cats = ['shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jacket', 'vest', 'pants', 'shorts', 'skirt', 'coat', 'dress', 'jumpsuit',
    'cape', 'glasses', 'hat', 'headband, head covering, hair accessory', 'tie', 'glove', 'watch', 'belt', 'leg warmer', 'tights, stockings', 'sock', 'shoe', 'bag, wallet', 'scarf', 'umbrella', 'hood', 'collar',
    'lapel', 'epaulette', 'sleeve', 'pocket', 'neckline', 'buckle', 'zipper', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet', 'ruffle', 'sequin', 'tassel']

dict_cats = dict(zip(np.arange(len(cats)), cats))

st.markdown("#### Step 2: Choose the elements you want to detect")

# Select one or more elements to detect
container = st.container()
selected_options = None
all = st.checkbox("Select all")

if all:
    selected_options = container.multiselect("**Select one or more items**", cats, cats)
else:
    selected_options = container.multiselect("**Select one or more items**", cats)

#cats = selected_options 
dict_cats_final = {key:value for (key,value) in dict_cats.items() if value in selected_options}


st.markdown("  ")
st.markdown("  ")



############## SELECT A THRESHOLD ###############

st.markdown("#### Step 3: Select a threshold")

st.markdown("""Finally, select a threshold for the model. 
            The threshold helps you decide how confident you want your model to be with its predictions. 
            Elements that were identified with a lower probability than the given threshold will be ignored in the final results.""")

threshold = st.slider('**Select a threshold**', min_value=0.0, step=0.05, max_value=1.0, value=0.75, label_visibility="collapsed")
# min_value=0.000000, step=0.000001, max_value=0.0005, value=0.0000045, format="%f"

if threshold < 0.6:
    st.warning("""**Warning**: Selecting a low threshold (below 0.6) could lead the model to make errors and detect too many objects.""")

st.write("You've selected a threshold at", threshold)


st.markdown("  ")


############# RUN MODEL ################

run_model = st.button("**Run the model**", type="primary")

if run_model:
    if image_ != None and selected_options != None and threshold!= None:
        with st.spinner('Wait for it...'):
            ## SELECT IMAGE
            image = Image.open(image_)
            image = fix_channels(ToTensor()(image))

            ## LOAD OBJECT DETECTION MODEL
            MODEL_NAME = "valentinafeve/yolos-fashionpedia"
            feature_extractor = YolosFeatureExtractor.from_pretrained('hustvl/yolos-small')
            model = YolosForObjectDetection.from_pretrained(MODEL_NAME)

            # RUN MODEL ON IMAGE
            inputs = feature_extractor(images=image, return_tensors="pt")
            outputs = model(**inputs)
            probas, keep = return_probas(outputs, threshold)

            # PLOT BOUNDING BOX AND BARS/PROBA
            col1, col2 = st.columns(2)
            with col1:
                st.markdown("##### Bounding box results")
                bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size)
                colors_used = plot_results(image, probas[keep], bboxes_scaled)
            
            with col2: 
                visualize_probas(probas, threshold, colors_used)
            
            st.info("Done")

    else:
        st.warning("You must select an **image**, **elements to detect** and a **threshold** to run the model !")