Spaces:
Sleeping
Sleeping
File size: 5,653 Bytes
b2fbe3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os
import tensorflow as tf
import tensorflow_hub as hub
# Load compressed models from tensorflow_hub
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
import matplotlib.pyplot as plt
import matplotlib as mpl
# For drawing onto the image.
import numpy as np
from tensorflow.python.ops.numpy_ops import np_config
np_config.enable_numpy_behavior()
from PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFont
import time
import streamlit as st
# For measuring the inference time.
import time
class ObjectDetector:
def __init__(self):
# Load Tokenizer & Model
# hub_location = 'cardiffnlp/twitter-roberta-base-sentiment'
# self.tokenizer = AutoTokenizer.from_pretrained(hub_location)
# self.model = AutoModelForSequenceClassification.from_pretrained(hub_location)
# Change model labels in config
# self.model.config.id2label[0] = "Negative"
# self.model.config.id2label[1] = "Neutral"
# self.model.config.id2label[2] = "Positive"
# self.model.config.label2id["Negative"] = self.model.config.label2id.pop("LABEL_0")
# self.model.config.label2id["Neutral"] = self.model.config.label2id.pop("LABEL_1")
# self.model.config.label2id["Positive"] = self.model.config.label2id.pop("LABEL_2")
# Instantiate explainer
# self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer)
# module_handle = "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1"
module_handle = "https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1"
self.detector = hub.load(module_handle).signatures['default']
def run_detector(self, path):
img = path
converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...]
start_time = time.time()
result = self.detector(converted_img)
end_time = time.time()
result = {key:value.numpy() for key,value in result.items()}
primer = format(result["detection_class_entities"][0]) + ' ' + format(round(result["detection_scores"][0]*100)) + '%'
image_with_boxes = self.draw_boxes(
img, result["detection_boxes"],
result["detection_class_entities"], result["detection_scores"])
# display_image(image_with_boxes)
return image_with_boxes, primer
def display_image(self, image):
fig = plt.figure(figsize=(20, 15))
plt.grid(False)
plt.imshow(image)
def draw_bounding_box_on_image(self, image,
ymin,
xmin,
ymax,
xmax,
color,
font,
thickness=4,
display_str_list=()):
"""Adds a bounding box to an image."""
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax * im_height)
draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
(left, top)],
width=thickness,
fill=color)
# If the total height of the display strings added to the top of the bounding
# box exceeds the top of the image, stack the strings below the bounding box
# instead of above.
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
# Each display_str has a top and bottom margin of 0.05x.
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
if top > total_display_str_height:
text_bottom = top
else:
text_bottom = top + total_display_str_height
# Reverse list and print from bottom to top.
for display_str in display_str_list[::-1]:
text_width, text_height = font.getsize(display_str)
margin = np.ceil(0.05 * text_height)
draw.rectangle([(left, text_bottom - text_height - 2 * margin),
(left + text_width, text_bottom)],
fill=color)
draw.text((left + margin, text_bottom - text_height - margin),
display_str,
fill="black",
font=font)
text_bottom -= text_height - 2 * margin
def draw_boxes(self, image, boxes, class_names, scores, max_boxes=10, min_score=0.4):
"""Overlay labeled boxes on an image with formatted scores and label names."""
colors = list(ImageColor.colormap.values())
try:
font = ImageFont.truetype("./Roboto-Light.ttf", 24)
except IOError:
print("Font not found, using default font.")
font = ImageFont.load_default()
for i in range(min(boxes.shape[0], max_boxes)):
if scores[i] >= min_score:
ymin, xmin, ymax, xmax = tuple(boxes[i])
display_str = "{}: {}%".format(class_names[i].decode("ascii"),
int(100 * scores[i]))
color = colors[hash(class_names[i]) % len(colors)]
image_pil = Image.fromarray(np.uint8(image)).convert("RGB")
self.draw_bounding_box_on_image(
image_pil,
ymin,
xmin,
ymax,
xmax,
color,
font,
display_str_list=[display_str])
np.copyto(image, np.array(image_pil))
return image
|