Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,13 +5,15 @@ import easyocr
|
|
5 |
import streamlit as st
|
6 |
from annotated_text import annotated_text
|
7 |
from streamlit_option_menu import option_menu
|
8 |
-
from
|
9 |
from keyword_extraction import KeywordExtractor
|
10 |
from part_of_speech_tagging import POSTagging
|
11 |
from emotion_detection import EmotionDetection
|
12 |
from named_entity_recognition import NamedEntityRecognition
|
13 |
from Object_Detector import ObjectDetector
|
14 |
from OCR_Detector import OCRDetector
|
|
|
|
|
15 |
import PIL
|
16 |
from PIL import Image
|
17 |
from PIL import ImageColor
|
@@ -35,286 +37,301 @@ import torch
|
|
35 |
import librosa
|
36 |
from models import infere_speech_emotion, infere_text_emotion, infere_voice2text
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
@st.cache_resource
|
73 |
-
def load_ocrdetector_model():
|
74 |
-
return OCRDetector()
|
75 |
-
|
76 |
-
sentiment_analyzer = load_sentiment_model()
|
77 |
-
keyword_extractor = load_keyword_model()
|
78 |
-
pos_tagger = load_pos_model()
|
79 |
-
emotion_detector = load_emotion_model()
|
80 |
-
ner = load_ner_model()
|
81 |
-
objectdetector1 = load_objectdetector_model()
|
82 |
-
ocrdetector1 = load_ocrdetector_model()
|
83 |
-
|
84 |
-
def rectangle(image, result):
|
85 |
-
draw = ImageDraw.Draw(image)
|
86 |
-
for res in result:
|
87 |
-
top_left = tuple(res[0][0]) # top left coordinates as tuple
|
88 |
-
bottom_right = tuple(res[0][2]) # bottom right coordinates as tuple
|
89 |
-
draw.rectangle((top_left, bottom_right), outline="blue", width=2)
|
90 |
-
st.image(image)
|
91 |
-
|
92 |
-
example_text = "My name is Daniel: The attention to detail, swift resolution, and accuracy demonstrated by ITACA Insurance Company in Spain in handling my claim were truly impressive. This undoubtedly reflects their commitment to being a customer-centric insurance provider."
|
93 |
-
|
94 |
-
with st.sidebar:
|
95 |
-
image = Image.open('./itaca_logo.png')
|
96 |
-
st.image(image,width=150) #use_column_width=True)
|
97 |
-
page = option_menu(menu_title='Menu',
|
98 |
-
menu_icon="robot",
|
99 |
-
options=["Sentiment Analysis",
|
100 |
-
"Keyword Extraction",
|
101 |
-
"Part of Speech Tagging",
|
102 |
-
"Emotion Detection",
|
103 |
-
"Named Entity Recognition",
|
104 |
-
"Speech & Text Emotion",
|
105 |
-
"Object Detector",
|
106 |
-
"OCR Detector"],
|
107 |
-
icons=["chat-dots",
|
108 |
-
"key",
|
109 |
-
"tag",
|
110 |
-
"emoji-heart-eyes",
|
111 |
-
"building",
|
112 |
-
"book",
|
113 |
-
"camera",
|
114 |
-
"list-task"],
|
115 |
-
default_index=0
|
116 |
-
)
|
117 |
-
|
118 |
-
st.title('ITACA Insurance Core AI Module')
|
119 |
-
|
120 |
-
# Replace '20px' with your desired font size
|
121 |
-
font_size = '20px'
|
122 |
-
|
123 |
-
if page == "Sentiment Analysis":
|
124 |
-
st.header('Sentiment Analysis')
|
125 |
-
# st.markdown("![Alt Text](https://media.giphy.com/media/XIqCQx02E1U9W/giphy.gif)")
|
126 |
-
st.write(
|
127 |
-
"""
|
128 |
-
"""
|
129 |
-
)
|
130 |
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
with st.spinner("Loading..."):
|
135 |
-
preds, html = sentiment_analyzer.run(text)
|
136 |
-
st.success('All done!')
|
137 |
-
st.write("")
|
138 |
-
st.subheader("Sentiment Predictions")
|
139 |
-
st.bar_chart(data=preds, width=0, height=0, use_container_width=True)
|
140 |
-
st.write("")
|
141 |
-
st.subheader("Sentiment Justification")
|
142 |
-
raw_html = html._repr_html_()
|
143 |
-
st.components.v1.html(raw_html, height=500)
|
144 |
-
|
145 |
-
elif page == "Keyword Extraction":
|
146 |
-
st.header('Keyword Extraction')
|
147 |
-
# st.markdown("![Alt Text](https://media.giphy.com/media/xT9C25UNTwfZuk85WP/giphy-downsized-large.gif)")
|
148 |
-
st.write(
|
149 |
-
"""
|
150 |
-
"""
|
151 |
-
)
|
152 |
|
153 |
-
|
|
|
|
|
|
|
154 |
|
155 |
-
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
|
158 |
-
with st.spinner("Loading..."):
|
159 |
-
annotation, keywords = keyword_extractor.generate(text, max_keywords)
|
160 |
-
st.success('All done!')
|
161 |
-
|
162 |
-
if annotation:
|
163 |
-
st.subheader("Keyword Annotation")
|
164 |
st.write("")
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
st.subheader("Extracted Keywords")
|
169 |
-
st.write("")
|
170 |
-
df = pd.DataFrame(keywords, columns=['Extracted Keywords'])
|
171 |
-
csv = df.to_csv(index=False).encode('utf-8')
|
172 |
-
st.download_button('Download Keywords to CSV', csv, file_name='news_intelligence_keywords.csv')
|
173 |
|
174 |
-
|
175 |
|
176 |
-
elif page == "Part of Speech Tagging":
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
"""
|
181 |
"""
|
182 |
-
|
183 |
|
184 |
-
|
|
|
|
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
st.subheader("Part of Speech tags")
|
192 |
-
annotated_text(*preds)
|
193 |
-
st.write("")
|
194 |
-
st.components.v1.iframe('https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html', height=1000)
|
195 |
|
196 |
-
elif page == "
|
197 |
-
|
198 |
-
|
199 |
-
st.write(
|
200 |
"""
|
201 |
"""
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
st.
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
"""
|
223 |
"""
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
st.write("")
|
233 |
-
|
234 |
-
|
235 |
-
st.
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
if st.button('🔥 Run!'):
|
251 |
-
with st.spinner("Loading..."):
|
252 |
-
img, primero = objectdetector1.run_detector(image)
|
253 |
-
st.success('The first image detected is: ' + primero)
|
254 |
-
st.image(img, caption="Imagen", use_column_width=True)
|
255 |
-
|
256 |
-
elif page == "OCR Detector":
|
257 |
-
st.header('OCR Detector')
|
258 |
-
st.write(
|
259 |
-
"""
|
260 |
-
"""
|
261 |
-
)
|
262 |
-
|
263 |
-
file = st.file_uploader("Load an image", type=["png", "jpg", "jpeg"])
|
264 |
-
|
265 |
-
#read the csv file and display the dataframe
|
266 |
-
if file is not None:
|
267 |
-
image = Image.open(file) # read image with PIL library
|
268 |
-
|
269 |
-
if st.button('🔥 Run!'):
|
270 |
-
with st.spinner("Loading..."):
|
271 |
-
result = ocrdetector1.reader.readtext(np.array(image)) # turn image to numpy array
|
272 |
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
pred_text = result[idx][1]
|
278 |
-
pred_confidence = result[idx][2]
|
279 |
-
textdic_easyocr[pred_text] = {}
|
280 |
-
textdic_easyocr[pred_text]['pred_confidence'] = pred_confidence
|
281 |
-
|
282 |
-
# get boxes on the image
|
283 |
-
rectangle(image, result)
|
284 |
-
|
285 |
-
# create a dataframe which shows the predicted text and prediction confidence
|
286 |
-
df = pd.DataFrame.from_dict(textdic_easyocr).T
|
287 |
-
st.table(df)
|
288 |
-
elif page == "Speech & Text Emotion":
|
289 |
-
st.header('Speech & Text Emotion')
|
290 |
-
st.write(
|
291 |
-
"""
|
292 |
-
"""
|
293 |
-
)
|
294 |
-
uploaded_file = st.file_uploader("Choose an audio file", type=["mp3", "wav", "ogg"])
|
295 |
-
|
296 |
-
if uploaded_file is not None:
|
297 |
-
st.audio(uploaded_file, format='audio/' + uploaded_file.type.split('/')[1])
|
298 |
-
st.write("Audio file uploaded and playing.")
|
299 |
-
|
300 |
-
else:
|
301 |
-
st.write("Please upload an audio file.")
|
302 |
-
|
303 |
-
if st.button("Analysis"):
|
304 |
-
with st.spinner("Loading..."):
|
305 |
-
st.header('Results of the Audio & Text analysis:')
|
306 |
-
samples, sample_rate = librosa.load(uploaded_file, sr=16000)
|
307 |
-
p_voice2text = infere_voice2text (samples)
|
308 |
-
p_speechemotion = infere_speech_emotion(samples)
|
309 |
-
p_textemotion = infere_text_emotion(p_voice2text)
|
310 |
-
st.subheader("Text from the Audio:")
|
311 |
-
st.write(p_voice2text)
|
312 |
-
st.write("---")
|
313 |
-
st.subheader("Speech emotion:")
|
314 |
-
st.write(p_speechemotion)
|
315 |
-
st.write("---")
|
316 |
-
st.subheader("Text emotion:")
|
317 |
-
st.write(p_textemotion)
|
318 |
-
st.write("---")
|
319 |
-
|
320 |
|
|
|
5 |
import streamlit as st
|
6 |
from annotated_text import annotated_text
|
7 |
from streamlit_option_menu import option_menu
|
8 |
+
from sentiment_analysis_v2 import SentimentAnalysis
|
9 |
from keyword_extraction import KeywordExtractor
|
10 |
from part_of_speech_tagging import POSTagging
|
11 |
from emotion_detection import EmotionDetection
|
12 |
from named_entity_recognition import NamedEntityRecognition
|
13 |
from Object_Detector import ObjectDetector
|
14 |
from OCR_Detector import OCRDetector
|
15 |
+
from detect_language import LanguageDetector
|
16 |
+
|
17 |
import PIL
|
18 |
from PIL import Image
|
19 |
from PIL import ImageColor
|
|
|
37 |
import librosa
|
38 |
from models import infere_speech_emotion, infere_text_emotion, infere_voice2text
|
39 |
|
40 |
+
from transformers import pipeline
|
41 |
+
|
42 |
+
def main():
|
43 |
+
|
44 |
+
st.set_page_config(layout="wide")
|
45 |
+
|
46 |
+
hide_streamlit_style = """
|
47 |
+
<style>
|
48 |
+
#MainMenu {visibility: hidden;}
|
49 |
+
footer {visibility: hidden;}
|
50 |
+
</style>
|
51 |
+
"""
|
52 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
53 |
+
|
54 |
+
@st.cache_resource
|
55 |
+
def load_sentiment_model():
|
56 |
+
return SentimentAnalysis()
|
57 |
+
|
58 |
+
@st.cache_resource
|
59 |
+
def load_keyword_model():
|
60 |
+
return KeywordExtractor()
|
61 |
+
|
62 |
+
@st.cache_resource
|
63 |
+
def load_pos_model():
|
64 |
+
return POSTagging()
|
65 |
+
|
66 |
+
@st.cache_resource
|
67 |
+
def load_emotion_model():
|
68 |
+
return EmotionDetection()
|
69 |
+
|
70 |
+
@st.cache_resource
|
71 |
+
def load_ner_model():
|
72 |
+
return NamedEntityRecognition()
|
73 |
+
|
74 |
+
@st.cache_resource
|
75 |
+
def load_objectdetector_model():
|
76 |
+
return ObjectDetector()
|
77 |
+
|
78 |
+
@st.cache_resource
|
79 |
+
def load_ocrdetector_model():
|
80 |
+
return OCRDetector()
|
81 |
+
|
82 |
+
@st.cache_resource
|
83 |
+
def load_langdetector_model():
|
84 |
+
return LanguageDetector()
|
85 |
+
|
86 |
+
sentiment_analyzer = load_sentiment_model()
|
87 |
+
keyword_extractor = load_keyword_model()
|
88 |
+
pos_tagger = load_pos_model()
|
89 |
+
emotion_detector = load_emotion_model()
|
90 |
+
ner = load_ner_model()
|
91 |
+
objectdetector1 = load_objectdetector_model()
|
92 |
+
ocrdetector1 = load_ocrdetector_model()
|
93 |
+
langdetector1 = load_langdetector_model()
|
94 |
+
|
95 |
+
def rectangle(image, result):
|
96 |
+
draw = ImageDraw.Draw(image)
|
97 |
+
for res in result:
|
98 |
+
top_left = tuple(res[0][0]) # top left coordinates as tuple
|
99 |
+
bottom_right = tuple(res[0][2]) # bottom right coordinates as tuple
|
100 |
+
draw.rectangle((top_left, bottom_right), outline="blue", width=2)
|
101 |
+
st.image(image)
|
102 |
+
|
103 |
+
example_text = "My name is Daniel: The attention to detail, swift resolution, and accuracy demonstrated by ITACA Insurance Company in Spain in handling my claim were truly impressive. This undoubtedly reflects their commitment to being a customer-centric insurance provider."
|
104 |
+
|
105 |
+
with st.sidebar:
|
106 |
+
image = Image.open('./itaca_logo.png')
|
107 |
+
st.image(image,width=150) #use_column_width=True)
|
108 |
+
page = option_menu(menu_title='Menu',
|
109 |
+
menu_icon="robot",
|
110 |
+
options=["Sentiment Analysis",
|
111 |
+
"Keyword Extraction",
|
112 |
+
"Part of Speech Tagging",
|
113 |
+
"Emotion Detection",
|
114 |
+
"Named Entity Recognition",
|
115 |
+
"Speech & Text Emotion",
|
116 |
+
"Object Detector",
|
117 |
+
"OCR Detector"],
|
118 |
+
icons=["chat-dots",
|
119 |
+
"key",
|
120 |
+
"tag",
|
121 |
+
"emoji-heart-eyes",
|
122 |
+
"building",
|
123 |
+
"book",
|
124 |
+
"camera",
|
125 |
+
"list-task"],
|
126 |
+
default_index=0
|
127 |
+
)
|
128 |
+
|
129 |
+
st.title('ITACA Insurance Core AI Module')
|
130 |
+
|
131 |
+
# Replace '20px' with your desired font size
|
132 |
+
font_size = '20px'
|
133 |
+
|
134 |
+
if page == "Sentiment Analysis":
|
135 |
+
st.header('Sentiment Analysis')
|
136 |
+
# st.markdown("![Alt Text](https://media.giphy.com/media/XIqCQx02E1U9W/giphy.gif)")
|
137 |
+
st.write(
|
138 |
"""
|
139 |
+
"""
|
140 |
+
)
|
141 |
+
|
142 |
+
text = st.text_area("Paste text here", value=example_text)
|
143 |
+
|
144 |
+
if st.button('🔥 Run!'):
|
145 |
+
with st.spinner("Loading..."):
|
146 |
+
o_lang = langdetector1.predict_language(text)
|
147 |
+
|
148 |
+
preds, html = sentiment_analyzer.run(text, o_lang)
|
149 |
+
st.success('All done!')
|
150 |
+
st.write("")
|
151 |
+
st.subheader("Sentiment Predictions")
|
152 |
+
st.bar_chart(data=preds, width=0, height=0, use_container_width=True)
|
153 |
+
st.write("")
|
154 |
+
st.subheader("Sentiment Justification")
|
155 |
+
raw_html = html._repr_html_()
|
156 |
+
st.components.v1.html(raw_html, height=500)
|
157 |
+
|
158 |
+
elif page == "Keyword Extraction":
|
159 |
+
st.header('Keyword Extraction')
|
160 |
+
# st.markdown("![Alt Text](https://media.giphy.com/media/xT9C25UNTwfZuk85WP/giphy-downsized-large.gif)")
|
161 |
+
st.write(
|
162 |
+
"""
|
163 |
+
"""
|
164 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
text = st.text_area("Paste text here", value=example_text)
|
167 |
|
168 |
+
max_keywords = st.slider('# of Keywords Max Limit', min_value=1, max_value=10, value=5, step=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
if st.button('🔥 Run!'):
|
171 |
+
with st.spinner("Loading..."):
|
172 |
+
annotation, keywords = keyword_extractor.generate(text, max_keywords)
|
173 |
+
st.success('All done!')
|
174 |
|
175 |
+
if annotation:
|
176 |
+
st.subheader("Keyword Annotation")
|
177 |
+
st.write("")
|
178 |
+
annotated_text(*annotation)
|
179 |
+
st.text("")
|
180 |
|
181 |
+
st.subheader("Extracted Keywords")
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
st.write("")
|
183 |
+
df = pd.DataFrame(keywords, columns=['Extracted Keywords'])
|
184 |
+
csv = df.to_csv(index=False).encode('utf-8')
|
185 |
+
st.download_button('Download Keywords to CSV', csv, file_name='news_intelligence_keywords.csv')
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
data_table = st.table(df)
|
188 |
|
189 |
+
elif page == "Part of Speech Tagging":
|
190 |
+
st.header('Part of Speech Tagging')
|
191 |
+
# st.markdown("![Alt Text](https://media.giphy.com/media/WoWm8YzFQJg5i/giphy.gif)")
|
192 |
+
st.write(
|
193 |
+
"""
|
194 |
+
"""
|
195 |
+
)
|
196 |
+
|
197 |
+
text = st.text_area("Paste text here", value=example_text)
|
198 |
+
|
199 |
+
if st.button('🔥 Run!'):
|
200 |
+
with st.spinner("Loading..."):
|
201 |
+
preds = pos_tagger.classify(text)
|
202 |
+
st.success('All done!')
|
203 |
+
st.write("")
|
204 |
+
st.subheader("Part of Speech tags")
|
205 |
+
annotated_text(*preds)
|
206 |
+
st.write("")
|
207 |
+
st.components.v1.iframe('https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html', height=1000)
|
208 |
+
|
209 |
+
elif page == "Emotion Detection":
|
210 |
+
st.header('Emotion Detection')
|
211 |
+
# st.markdown("![Alt Text](https://media.giphy.com/media/fU8X6ozSszyEw/giphy.gif)")
|
212 |
+
st.write(
|
213 |
+
"""
|
214 |
+
"""
|
215 |
+
)
|
216 |
+
|
217 |
+
text = st.text_area("Paste text here", value=example_text)
|
218 |
+
|
219 |
+
if st.button('🔥 Run!'):
|
220 |
+
with st.spinner("Loading..."):
|
221 |
+
preds, html = emotion_detector.run(text)
|
222 |
+
st.success('All done!')
|
223 |
+
st.write("")
|
224 |
+
st.subheader("Emotion Predictions")
|
225 |
+
st.bar_chart(data=preds, width=0, height=0, use_container_width=True)
|
226 |
+
raw_html = html._repr_html_()
|
227 |
+
st.write("")
|
228 |
+
st.subheader("Emotion Justification")
|
229 |
+
st.components.v1.html(raw_html, height=500)
|
230 |
+
|
231 |
+
elif page == "Named Entity Recognition":
|
232 |
+
st.header('Named Entity Recognition')
|
233 |
+
# st.markdown("![Alt Text](https://media.giphy.com/media/lxO8wdWdu4tig/giphy.gif)")
|
234 |
+
st.write(
|
235 |
+
"""
|
236 |
+
"""
|
237 |
+
)
|
238 |
+
|
239 |
+
text = st.text_area("Paste text here", value=example_text)
|
240 |
+
|
241 |
+
if st.button('🔥 Run!'):
|
242 |
+
with st.spinner("Loading..."):
|
243 |
+
preds, ner_annotation = ner.classify(text)
|
244 |
+
st.success('All done!')
|
245 |
+
st.write("")
|
246 |
+
st.subheader("NER Predictions")
|
247 |
+
annotated_text(*ner_annotation)
|
248 |
+
st.write("")
|
249 |
+
st.subheader("NER Prediction Metadata")
|
250 |
+
st.write(preds)
|
251 |
+
|
252 |
+
elif page == "Object Detector":
|
253 |
+
st.header('Object Detector')
|
254 |
+
st.write(
|
255 |
"""
|
256 |
"""
|
257 |
+
)
|
258 |
|
259 |
+
img_file_buffer = st.file_uploader("Load an image", type=["png", "jpg", "jpeg"])
|
260 |
+
if img_file_buffer is not None:
|
261 |
+
image = np.array(Image.open(img_file_buffer))
|
262 |
|
263 |
+
if st.button('🔥 Run!'):
|
264 |
+
with st.spinner("Loading..."):
|
265 |
+
img, primero = objectdetector1.run_detector(image)
|
266 |
+
st.success('The first image detected is: ' + primero)
|
267 |
+
st.image(img, caption="Imagen", use_column_width=True)
|
|
|
|
|
|
|
|
|
268 |
|
269 |
+
elif page == "OCR Detector":
|
270 |
+
st.header('OCR Detector')
|
271 |
+
st.write(
|
|
|
272 |
"""
|
273 |
"""
|
274 |
+
)
|
275 |
+
|
276 |
+
file = st.file_uploader("Load an image", type=["png", "jpg", "jpeg"])
|
277 |
+
|
278 |
+
#read the csv file and display the dataframe
|
279 |
+
if file is not None:
|
280 |
+
image = Image.open(file) # read image with PIL library
|
281 |
+
|
282 |
+
if st.button('🔥 Run!'):
|
283 |
+
with st.spinner("Loading..."):
|
284 |
+
result = ocrdetector1.reader.readtext(np.array(image)) # turn image to numpy array
|
285 |
+
|
286 |
+
# collect the results in dictionary:
|
287 |
+
textdic_easyocr = {}
|
288 |
+
for idx in range(len(result)):
|
289 |
+
pred_coor = result[idx][0]
|
290 |
+
pred_text = result[idx][1]
|
291 |
+
pred_confidence = result[idx][2]
|
292 |
+
textdic_easyocr[pred_text] = {}
|
293 |
+
textdic_easyocr[pred_text]['pred_confidence'] = pred_confidence
|
294 |
+
|
295 |
+
# get boxes on the image
|
296 |
+
rectangle(image, result)
|
297 |
+
|
298 |
+
# create a dataframe which shows the predicted text and prediction confidence
|
299 |
+
df = pd.DataFrame.from_dict(textdic_easyocr).T
|
300 |
+
st.table(df)
|
301 |
+
elif page == "Speech & Text Emotion":
|
302 |
+
st.header('Speech & Text Emotion')
|
303 |
+
st.write(
|
304 |
"""
|
305 |
"""
|
306 |
+
)
|
307 |
+
uploaded_file = st.file_uploader("Choose an audio file", type=["mp3", "wav", "ogg"])
|
308 |
+
|
309 |
+
if uploaded_file is not None:
|
310 |
+
st.audio(uploaded_file, format='audio/' + uploaded_file.type.split('/')[1])
|
311 |
+
st.write("Audio file uploaded and playing.")
|
312 |
+
|
313 |
+
else:
|
314 |
+
st.write("Please upload an audio file.")
|
315 |
+
|
316 |
+
if st.button("Analysis"):
|
317 |
+
with st.spinner("Loading..."):
|
318 |
+
st.header('Results of the Audio & Text analysis:')
|
319 |
+
samples, sample_rate = librosa.load(uploaded_file, sr=16000)
|
320 |
+
p_voice2text = infere_voice2text (samples)
|
321 |
+
p_speechemotion = infere_speech_emotion(samples)
|
322 |
+
p_textemotion = infere_text_emotion(p_voice2text)
|
323 |
+
st.subheader("Text from the Audio:")
|
324 |
+
st.write(p_voice2text)
|
325 |
+
st.write("---")
|
326 |
+
st.subheader("Speech emotion:")
|
327 |
+
st.write(p_speechemotion)
|
328 |
+
st.write("---")
|
329 |
+
st.subheader("Text emotion:")
|
330 |
+
st.write(p_textemotion)
|
331 |
+
st.write("---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
|
333 |
+
try:
|
334 |
+
main()
|
335 |
+
except Exception as e:
|
336 |
+
st.sidebar.error(f"An error occurred: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|