File size: 12,217 Bytes
2396fdf
5b31094
 
 
 
 
2396fdf
699405e
5b31094
 
699405e
5b31094
699405e
5b31094
 
699405e
5b31094
699405e
9c55eca
 
5b31094
 
699405e
5b31094
699405e
5b31094
 
53c5524
699405e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeef127
699405e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2396fdf
 
 
 
 
 
 
 
 
 
699405e
 
 
 
5b31094
 
 
 
 
 
2396fdf
5b31094
 
 
 
 
 
 
 
 
2396fdf
5b31094
 
699405e
 
5b31094
 
 
 
 
 
 
699405e
5b31094
 
 
 
 
 
 
 
 
 
 
 
699405e
 
 
 
 
 
 
 
 
 
 
 
5b31094
 
 
2396fdf
 
 
5b31094
 
2396fdf
5b31094
2396fdf
 
 
 
 
 
 
 
 
5b31094
2396fdf
 
294db91
5b31094
2396fdf
5b31094
 
 
 
 
 
 
 
294db91
 
 
 
 
 
 
 
 
 
 
5b31094
 
 
2396fdf
699405e
 
 
 
 
 
 
2396fdf
699405e
2396fdf
 
 
 
 
699405e
5b31094
 
 
cfa05ff
 
2adf03d
5b31094
 
cfa05ff
5b31094
 
 
cfa05ff
 
 
5b31094
 
 
cfa05ff
5b31094
cfa05ff
5b31094
699405e
 
2396fdf
699405e
5b31094
699405e
 
 
eeef127
 
699405e
eeef127
699405e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2396fdf
 
 
 
 
 
 
 
 
 
 
 
699405e
 
 
 
 
 
 
 
db1380f
699405e
 
 
2396fdf
699405e
 
 
 
 
 
5b31094
9634227
 
 
 
 
699405e
 
 
 
 
 
 
 
 
2396fdf
 
699405e
 
5b31094
 
699405e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import functools
import json
import os
import sys
import tempfile

import cv2
import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from segment_anything import build_sam
from segment_anything import SamAutomaticMaskGenerator
from segment_anything import SamPredictor
from supervision.detection.utils import mask_to_polygons
from supervision.detection.utils import xywh_to_xyxy

if os.environ.get("IS_MY_DEBUG") is None:
    os.system("pip install -e GroundingDINO")

sys.path.append("tag2text")
sys.path.append("GroundingDINO")

from groundingdino.util.inference import Model as DinoModel
from tag2text.models import tag2text
from config import *
from utils import download_file_hf, detect, segment, generate_tags

if not os.path.exists(abs_weight_dir):
    os.makedirs(abs_weight_dir, exist_ok=True)

sam_checkpoint = os.path.join(abs_weight_dir, sam_dict[default_sam]["checkpoint_file"])
if not os.path.exists(sam_checkpoint):
    os.system(f"wget {sam_dict[default_sam]['checkpoint_url']} -O {sam_checkpoint}")

tag2text_checkpoint = os.path.join(
    abs_weight_dir, tag2text_dict[default_tag2text]["checkpoint_file"]
)
if not os.path.exists(tag2text_checkpoint):
    os.system(
        f"wget {tag2text_dict[default_tag2text]['checkpoint_url']} -O {tag2text_checkpoint}"
    )

dino_checkpoint = os.path.join(
    abs_weight_dir, dino_dict[default_dino]["checkpoint_file"]
)
dino_config_file = os.path.join(abs_weight_dir, dino_dict[default_dino]["config_file"])
if not os.path.exists(dino_checkpoint):
    dino_repo_id = dino_dict[default_dino]["repo_id"]
    download_file_hf(
        repo_id=dino_repo_id,
        filename=dino_dict[default_dino]["config_file"],
        cache_dir=weight_dir,
    )
    download_file_hf(
        repo_id=dino_repo_id,
        filename=dino_dict[default_dino]["checkpoint_file"],
        cache_dir=weight_dir,
    )

# load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tag2text_model = tag2text.tag2text_caption(
    pretrained=tag2text_checkpoint,
    image_size=384,
    vit="swin_b",
    delete_tag_index=delete_tag_index,
)
# threshold for tagging
# we reduce the threshold to obtain more tags
tag2text_model.threshold = 0.64
tag2text_model.to(device)
tag2text_model.eval()


sam = build_sam(checkpoint=sam_checkpoint)
sam.to(device=device)
sam_predictor = SamPredictor(sam)
sam_automask_generator = SamAutomaticMaskGenerator(sam)

grounding_dino_model = DinoModel(
    model_config_path=dino_config_file,
    model_checkpoint_path=dino_checkpoint,
    device=device,
)


def process(

    image_path,

    task,

    prompt,

    box_threshold,

    text_threshold,

    iou_threshold,

    kernel_size,

    expand_mask,

):
    global tag2text_model, sam_predictor, sam_automask_generator, grounding_dino_model, device
    output_gallery = []
    detections = None
    metadata = {"image": {}, "annotations": []}

    try:
        # Load image
        image = Image.open(image_path)
        image_pil = image.convert("RGB")
        image = np.array(image_pil)
        orig_image = image.copy()

        # Extract image metadata
        filename = os.path.basename(image_path)
        h, w = image.shape[:2]
        metadata["image"]["file_name"] = filename
        metadata["image"]["width"] = w
        metadata["image"]["height"] = h

        # Generate tags
        if task in ["auto", "detection"] and prompt == "":
            tags, caption = generate_tags(tag2text_model, image_pil, "None", device)
            prompt = " . ".join(tags)
            print(f"Caption: {caption}")
            print(f"Tags: {tags}")

            # ToDo: Extract metadata
            metadata["image"]["caption"] = caption
            metadata["image"]["tags"] = tags

        if prompt:
            metadata["prompt"] = prompt
            print(f"Prompt: {prompt}")

        # Detect boxes
        if prompt != "":
            detections, phrases, classes = detect(
                grounding_dino_model,
                image,
                caption=prompt,
                box_threshold=box_threshold,
                text_threshold=text_threshold,
                iou_threshold=iou_threshold,
                post_process=True,
            )
            print(phrases)

            # Draw boxes
            box_annotator = sv.BoxAnnotator()
            labels = [
                f"{phrases[i]} {detections.confidence[i]:0.2f}"
                for i in range(len(phrases))
            ]
            image = box_annotator.annotate(
                scene=image, detections=detections, labels=labels
            )
            output_gallery.append(image)

        # Segmentation
        if task in ["auto", "segment"]:
            kernel = cv2.getStructuringElement(
                cv2.MORPH_ELLIPSE, (2 * kernel_size + 1, 2 * kernel_size + 1)
            )
            if detections:
                masks, scores = segment(
                    sam_predictor, image=orig_image, boxes=detections.xyxy
                )
                if expand_mask:
                    masks = [
                        cv2.dilate(mask.astype(np.uint8), kernel) for mask in masks
                    ]
                else:
                    masks = [
                        cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, kernel)
                        for mask in masks
                    ]
                detections.mask = masks
                binary_mask = functools.reduce(
                    lambda x, y: x + y, detections.mask
                ).astype(bool)
            else:
                masks = sam_automask_generator.generate(orig_image)
                sorted_generated_masks = sorted(
                    masks, key=lambda x: x["area"], reverse=True
                )

                xywh = np.array([mask["bbox"] for mask in sorted_generated_masks])
                scores = np.array(
                    [mask["predicted_iou"] for mask in sorted_generated_masks]
                )
                if expand_mask:
                    mask = np.array(
                        [
                            cv2.dilate(mask["segmentation"].astype(np.uint8), kernel)
                            for mask in sorted_generated_masks
                        ]
                    )
                else:
                    mask = np.array(
                        [mask["segmentation"] for mask in sorted_generated_masks]
                    )
                detections = sv.Detections(
                    xyxy=xywh_to_xyxy(boxes_xywh=xywh), mask=mask
                )
                binary_mask = None

            mask_annotator = sv.MaskAnnotator()
            mask_image = np.zeros_like(image, dtype=np.uint8)
            mask_image = mask_annotator.annotate(
                mask_image, detections=detections, opacity=1
            )
            annotated_image = mask_annotator.annotate(image, detections=detections)

            output_gallery.append(mask_image)
            if binary_mask is not None:
                binary_mask_image = binary_mask * 255
                cutout_image = np.expand_dims(binary_mask, axis=-1) * orig_image
                output_gallery.append(binary_mask_image)
                output_gallery.append(cutout_image)
            output_gallery.append(annotated_image)

        # ToDo: Extract metadata
        if detections:
            i = 0
            for (xyxy, mask, confidence, _, _), area, box_area in zip(
                detections, detections.area, detections.box_area
            ):
                annotation = {
                    "id": i + 1,
                    "bbox": [int(x) for x in xyxy],
                    "box_area": float(box_area),
                }
                if confidence:
                    annotation["confidence"] = float(confidence)
                    annotation["label"] = phrases[i]
                if mask is not None:
                    # annotation["segmentation"] = mask_to_polygons(mask)
                    annotation["area"] = int(area)
                    annotation["predicted_iou"] = float(scores[i])
                metadata["annotations"].append(annotation)
                i += 1

        meta_file = tempfile.NamedTemporaryFile(delete=False, suffix=".json")
        meta_file_path = meta_file.name
        with open(meta_file_path, "w", encoding="utf-8") as fp:
            json.dump(metadata, fp)

        return output_gallery, meta_file_path
    except Exception as error:
        raise gr.Error(f"global exception: {error}")


title = "Annotate Anything"

with gr.Blocks(css="style.css", title=title) as demo:
    with gr.Row(elem_classes=["container"]):
        with gr.Column(scale=1):
            input_image = gr.Image(type="filepath", label="Input")
            task = gr.Dropdown(
                ["detect", "segment", "auto"], value="auto", label="task_type"
            )
            text_prompt = gr.Textbox(
                label="Detection Prompt",
                info="To detect multiple objects, seperating each name with '.', like this: cat . dog . chair ",
            )
            with gr.Accordion("Advanced parameters", open=False):
                box_threshold = gr.Slider(
                    minimum=0,
                    maximum=1,
                    value=0.3,
                    step=0.05,
                    label="Box threshold",
                )
                text_threshold = gr.Slider(
                    minimum=0,
                    maximum=1,
                    value=0.25,
                    step=0.05,
                    label="Text threshold",
                )
                iou_threshold = gr.Slider(
                    minimum=0,
                    maximum=1,
                    value=0.5,
                    step=0.05,
                    label="IOU threshold",
                    info="Intersection over Union threshold",
                )
                kernel_size = gr.Slider(
                    minimum=1,
                    maximum=5,
                    value=2,
                    step=1,
                    label="Kernel size",
                    info="Use to smooth segment masks",
                )
                expand_mask = gr.Checkbox(
                    label="Expand mask",
                )
            run_button = gr.Button(label="Run")

        with gr.Column(scale=2):
            gallery = gr.Gallery(
                label="Generated images", show_label=False, elem_id="gallery"
            ).style(preview=True, grid=2, object_fit="scale-down")
            meta_file = gr.File(label="Metadata file")
    with gr.Column(elem_classes=["container"]):
        gr.Examples(
            [
                ["examples/dog.png", "auto", ""],
                ["examples/eiffel.jpg", "auto", "tower . lake . grass . sky"],
                ["examples/eiffel.png", "segment", ""],
                ["examples/girl.png", "auto", "girl . face"],
                ["examples/horse.png", "detect", "horse"],
                ["examples/traffic.jpg", "auto", ""],
            ],
            [input_image, task, text_prompt],
        )
        gr.HTML(
            """<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/dragonSwing/annotate-anything?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>

                <p><img src="https://visitor-badge.glitch.me/badge?page_id=dragonswing.annotate-anything" alt="visitors"></p></center>"""
        )

    run_button.click(
        fn=process,
        inputs=[
            input_image,
            task,
            text_prompt,
            box_threshold,
            text_threshold,
            iou_threshold,
            kernel_size,
            expand_mask,
        ],
        outputs=[gallery, meta_file],
    )

demo.queue(concurrency_count=2).launch()