dragonSwing's picture
Add application files
5b31094
raw
history blame
10.1 kB
import json
import os
import sys
import tempfile
import gradio as gr
import numpy as np
import supervision as sv
import torch
from groundingdino.util.inference import Model as DinoModel
from PIL import Image
from segment_anything import build_sam
from segment_anything import SamAutomaticMaskGenerator
from segment_anything import SamPredictor
from supervision.detection.utils import mask_to_polygons
from supervision.detection.utils import xywh_to_xyxy
# segment anything
# Grounding DINO
sys.path.append("tag2text")
from tag2text.models import tag2text
from config import *
from utils import download_file_hf, detect, segment, show_anns, generate_tags
if not os.path.exists(abs_weight_dir):
os.makedirs(abs_weight_dir, exist_ok=True)
sam_checkpoint = os.path.join(abs_weight_dir, sam_dict[default_sam]["checkpoint_file"])
if not os.path.exists(sam_checkpoint):
os.system(f"wget {sam_dict[default_sam]['checkpoint_url']} -O {sam_checkpoint}")
tag2text_checkpoint = os.path.join(
abs_weight_dir, tag2text_dict[default_tag2text]["checkpoint_file"]
)
if not os.path.exists(tag2text_checkpoint):
os.system(
f"wget {tag2text_dict[default_tag2text]['checkpoint_url']} -O {tag2text_checkpoint}"
)
dino_checkpoint = os.path.join(
abs_weight_dir, dino_dict[default_dino]["checkpoint_file"]
)
dino_config_file = os.path.join(abs_weight_dir, dino_dict[default_dino]["config_file"])
if not os.path.exists(dino_checkpoint):
dino_repo_id = dino_dict[default_dino]["repo_id"]
download_file_hf(
repo_id=dino_repo_id,
filename=dino_dict[default_dino]["config_file"],
cache_dir=weight_dir,
)
download_file_hf(
repo_id=dino_repo_id,
filename=dino_dict[default_dino]["checkpoint_file"],
cache_dir=weight_dir,
)
# load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tag2text_model = tag2text.tag2text_caption(
pretrained=tag2text_checkpoint,
image_size=384,
vit="swin_b",
delete_tag_index=delete_tag_index,
)
# threshold for tagging
# we reduce the threshold to obtain more tags
tag2text_model.threshold = 0.64
tag2text_model.to(device)
tag2text_model.eval()
sam = build_sam(checkpoint=sam_checkpoint)
sam.to(device=device)
sam_predictor = SamPredictor(sam)
sam_automask_generator = SamAutomaticMaskGenerator(sam)
grounding_dino_model = DinoModel(
model_config_path=dino_config_file, model_checkpoint_path=dino_checkpoint
)
def process(image_path, task, prompt, box_threshold, text_threshold, iou_threshold):
global tag2text_model, sam_predictor, sam_automask_generator, grounding_dino_model, device
output_gallery = []
detections = None
metadata = {"image": {}, "annotations": []}
try:
# Load image
image = Image.open(image_path)
image_pil = image.convert("RGB")
image = np.array(image_pil)
# Extract image metadata
filename = os.path.basename(image_path)
h, w = image.shape[:2]
metadata["image"]["file_name"] = filename
metadata["image"]["width"] = w
metadata["image"]["height"] = h
# Generate tags
if task in ["auto", "detection"] and prompt == "":
tags, caption = generate_tags(tag2text_model, image_pil, "None", device)
prompt = " . ".join(tags)
print(f"Caption: {caption}")
print(f"Tags: {tags}")
# ToDo: Extract metadata
metadata["image"]["caption"] = caption
metadata["image"]["tags"] = tags
if prompt:
metadata["prompt"] = prompt
print(f"Prompt: {prompt}")
# Detect boxes
if prompt != "":
detections, phrases, classes = detect(
grounding_dino_model,
image,
caption=prompt,
box_threshold=box_threshold,
text_threshold=text_threshold,
iou_threshold=iou_threshold,
post_process=True,
)
# Draw boxes
box_annotator = sv.BoxAnnotator()
labels = [
f"{classes[class_id] if class_id else 'Unkown'} {confidence:0.2f}"
for _, _, confidence, class_id, _ in detections
]
image = box_annotator.annotate(
scene=image, detections=detections, labels=labels
)
output_gallery.append(image)
# Segmentation
if task in ["auto", "segment"]:
if detections:
masks, scores = segment(
sam_predictor, image=image, boxes=detections.xyxy
)
detections.mask = masks
else:
masks = sam_automask_generator.generate(image)
sorted_generated_masks = sorted(
masks, key=lambda x: x["area"], reverse=True
)
xywh = np.array([mask["bbox"] for mask in sorted_generated_masks])
mask = np.array(
[mask["segmentation"] for mask in sorted_generated_masks]
)
scores = np.array(
[mask["predicted_iou"] for mask in sorted_generated_masks]
)
detections = sv.Detections(
xyxy=xywh_to_xyxy(boxes_xywh=xywh), mask=mask
)
# opacity = 0.4
# mask_image, _ = show_anns_sam(masks)
# annotated_image = np.uint8(mask_image * opacity + image * (1 - opacity))
mask_annotator = sv.MaskAnnotator()
mask_image = np.zeros_like(image, dtype=np.uint8)
mask_image = mask_annotator.annotate(
mask_image, detections=detections, opacity=1
)
annotated_image = mask_annotator.annotate(image, detections=detections)
output_gallery.append(mask_image)
output_gallery.append(annotated_image)
# ToDo: Extract metadata
if detections:
id = 1
for (xyxy, mask, confidence, class_id, _), area, box_area, score in zip(
detections, detections.area, detections.box_area, scores
):
annotation = {
"id": id,
"bbox": [int(x) for x in xyxy],
"box_area": float(box_area),
}
if class_id:
annotation["box_confidence"] = float(confidence)
annotation["label"] = classes[class_id] if class_id else "Unkown"
if mask is not None:
# annotation["segmentation"] = mask_to_polygons(mask)
annotation["area"] = int(area)
annotation["predicted_iou"] = float(score)
metadata["annotations"].append(annotation)
id += 1
meta_file = tempfile.NamedTemporaryFile(delete=False, suffix=".json")
meta_file_path = meta_file.name
with open(meta_file_path, "w") as fp:
json.dump(metadata, fp)
return output_gallery, meta_file_path
except Exception as error:
raise gr.Error(f"global exception: {error}")
title = "Annotate Anything"
with gr.Blocks(css="style.css", title=title) as demo:
with gr.Row(elem_classes=["container"]):
with gr.Column(scale=1):
input_image = gr.Image(type="filepath", label="Input")
task = gr.Dropdown(
["detect", "segment", "auto"], value="auto", label="task_type"
)
text_prompt = gr.Textbox(label="Detection Prompt")
with gr.Accordion("Advanced parameters", open=False):
box_threshold = gr.Slider(
minimum=0,
maximum=1,
value=0.3,
step=0.05,
label="Box threshold",
info="Hash size to use for image hashing",
)
text_threshold = gr.Slider(
minimum=0,
maximum=1,
value=0.25,
step=0.05,
label="Text threshold",
info="Number of history images used to find out duplicate image",
)
iou_threshold = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.05,
label="IOU threshold",
info="Minimum similarity threshold (in percent) to consider 2 images to be similar",
)
run_button = gr.Button(label="Run")
with gr.Column(scale=2):
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(preview=True, grid=2, object_fit="scale-down")
meta_file = gr.File(label="Metadata file")
with gr.Row(elem_classes=["container"]):
gr.Examples(
[
["examples/dog.png", "auto", ""],
["examples/eiffel.png", "auto", ""],
["examples/eiffel.png", "segment", ""],
["examples/girl.png", "auto", "girl . face"],
["examples/horse.png", "detect", "horse"],
["examples/horses.jpg", "auto", "horse"],
["examples/traffic.jpg", "auto", ""],
],
[input_image, task, text_prompt],
)
run_button.click(
fn=process,
inputs=[
input_image,
task,
text_prompt,
box_threshold,
text_threshold,
iou_threshold,
],
outputs=[gallery, meta_file],
)
demo.queue(concurrency_count=2).launch()