dragonSwing's picture
Add application files
5b31094
raw
history blame
2.9 kB
"""
* Tag2Text
* Written by Xinyu Huang
"""
import argparse
import random
import numpy as np
import torch
import torchvision.transforms as transforms
from models.tag2text import tag2text_caption
from PIL import Image
parser = argparse.ArgumentParser(
description="Tag2Text inferece for tagging and captioning"
)
parser.add_argument(
"--image",
metavar="DIR",
help="path to dataset",
default="images/1641173_2291260800.jpg",
)
parser.add_argument(
"--pretrained",
metavar="DIR",
help="path to pretrained model",
default="pretrained/tag2text_swin_14m.pth",
)
parser.add_argument(
"--image-size",
default=384,
type=int,
metavar="N",
help="input image size (default: 448)",
)
parser.add_argument(
"--thre", default=0.68, type=float, metavar="N", help="threshold value"
)
parser.add_argument(
"--specified-tags", default="None", help="User input specified tags"
)
def inference(image, model, input_tag="None"):
with torch.no_grad():
caption, tag_predict = model.generate(
image, tag_input=None, max_length=50, return_tag_predict=True
)
if input_tag == "" or input_tag == "none" or input_tag == "None":
return tag_predict[0], None, caption[0]
# If user input specified tags:
else:
input_tag_list = []
input_tag_list.append(input_tag.replace(",", " | "))
with torch.no_grad():
caption, input_tag = model.generate(
image, tag_input=input_tag_list, max_length=50, return_tag_predict=True
)
return tag_predict[0], input_tag[0], caption[0]
if __name__ == "__main__":
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
transform = transforms.Compose(
[
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
normalize,
]
)
# delete some tags that may disturb captioning
# 127: "quarter"; 2961: "back", 3351: "two"; 3265: "three"; 3338: "four"; 3355: "five"; 3359: "one"
delete_tag_index = [127, 2961, 3351, 3265, 3338, 3355, 3359]
#######load model
model = tag2text_caption(
pretrained=args.pretrained,
image_size=args.image_size,
vit="swin_b",
delete_tag_index=delete_tag_index,
)
model.threshold = args.thre # threshold for tagging
model.eval()
model = model.to(device)
raw_image = Image.open(args.image).resize((args.image_size, args.image_size))
image = transform(raw_image).unsqueeze(0).to(device)
res = inference(image, model, args.specified_tags)
print("Model Identified Tags: ", res[0])
print("User Specified Tags: ", res[1])
print("Image Caption: ", res[2])