nanosam / utils.py
dragonSwing's picture
Upload files
67d4d3e
raw
history blame
5.92 kB
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
import requests
from PIL import Image
def point_prompt(masks, points, point_label, target_height, target_width):
h = masks[0]["segmentation"].shape[0]
w = masks[0]["segmentation"].shape[1]
if h != target_height or w != target_width:
points = [
[int(point[0] * w / target_width), int(point[1] * h / target_height)]
for point in points
]
onemask = np.zeros((h, w))
for i, annotation in enumerate(masks):
if type(annotation) == dict:
mask = annotation["segmentation"]
else:
mask = annotation
for i, point in enumerate(points):
if mask[point[1], point[0]] == 1:
if point_label[i] == 0:
onemask -= mask
else:
onemask += mask
break
onemask = onemask > 0
return onemask, 0
def format_results(masks, scores, logits, filter=0):
annotations = []
n = len(scores)
for i in range(n):
annotation = {}
mask = masks[i] > 0
tmp = np.where(mask)
annotation["id"] = i
annotation["segmentation"] = mask
annotation["bbox"] = [
np.min(tmp[0]),
np.min(tmp[1]),
np.max(tmp[1]),
np.max(tmp[0]),
]
annotation["score"] = scores[i]
annotation["area"] = mask.sum()
annotations.append(annotation)
return annotations
def fast_process(
annotations,
image,
scale,
better_quality=False,
mask_random_color=True,
bbox=None,
use_retina=True,
withContours=True,
):
if isinstance(annotations[0], dict):
annotations = [annotation["segmentation"] for annotation in annotations]
original_h = image.height
original_w = image.width
if better_quality:
for i, mask in enumerate(annotations):
mask = cv2.morphologyEx(
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
)
annotations[i] = cv2.morphologyEx(
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
)
annotations = np.asarray(annotations)
inner_mask = fast_show_mask(
annotations,
plt.gca(),
random_color=mask_random_color,
bbox=bbox,
retinamask=use_retina,
target_height=original_h,
target_width=original_w,
)
if withContours:
contour_all = []
temp = np.zeros((original_h, original_w, 1))
for i, mask in enumerate(annotations):
if type(mask) == dict:
mask = mask["segmentation"]
annotation = mask.astype(np.uint8)
if use_retina == False:
annotation = cv2.resize(
annotation,
(original_w, original_h),
interpolation=cv2.INTER_NEAREST,
)
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
contour_all.append(contour)
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
contour_mask = temp / 255 * color.reshape(1, 1, -1)
image = image.convert("RGBA")
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), "RGBA")
image.paste(overlay_inner, (0, 0), overlay_inner)
if withContours:
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), "RGBA")
image.paste(overlay_contour, (0, 0), overlay_contour)
return image
# CPU post process
def fast_show_mask(
annotation,
ax,
random_color=False,
bbox=None,
retinamask=True,
target_height=960,
target_width=960,
):
mask_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
areas = np.sum(annotation, axis=(1, 2))
sorted_indices = np.argsort(areas)[::1]
annotation = annotation[sorted_indices]
index = (annotation != 0).argmax(axis=0)
if random_color == True:
color = np.random.random((mask_sum, 1, 1, 3))
else:
color = np.ones((mask_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 255 / 255])
transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6
visual = np.concatenate([color, transparency], axis=-1)
mask_image = np.expand_dims(annotation, -1) * visual
mask = np.zeros((height, weight, 4))
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing="ij")
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
mask[h_indices, w_indices, :] = mask_image[indices]
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(
plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1)
)
if retinamask == False:
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
return mask
def download_file_from_url(url, output_file, chunk_size=8192):
output_dir = os.path.dirname(output_file)
os.makedirs(output_dir, exist_ok=True)
try:
with requests.get(url, stream=True) as response:
if response.status_code == 200:
with open(output_file, 'wb') as f:
for chunk in response.iter_content(chunk_size=chunk_size):
f.write(chunk)
else:
print(f"Failed to download file. Status code: {response.status_code}")
except Exception as e:
print(f"An error occurred: {e}")