Spaces:
Running
Running
import numpy as np | |
import os | |
from nanosam import Predictor | |
import gradio as gr | |
import time | |
from PIL import ImageDraw | |
from utils import download_file_from_url, fast_process, format_results, point_prompt | |
# Most of our demo code is from [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). Huge thanks for AN-619. | |
if not os.path.exists("onnx/sam_hgv2_b4_ln_nonorm_image_encoder.onnx"): | |
download_file_from_url( | |
"https://huggingface.co/dragonSwing/nanosam/resolve/main/sam_hgv2_b4_ln_nonorm_image_encoder.onnx", | |
"onnx/sam_hgv2_b4_ln_nonorm_image_encoder.onnx", | |
) | |
if not os.path.exists("onnx/efficientvit_l0_mask_decoder.onnx"): | |
download_file_from_url( | |
"https://huggingface.co/dragonSwing/nanosam/resolve/main/efficientvit_l0_mask_decoder.onnx", | |
"onnx/efficientvit_l0_mask_decoder.onnx", | |
) | |
# Load the pre-trained model | |
image_encoder_cfg = { | |
"path": "onnx/sam_hgv2_b4_ln_nonorm_image_encoder.onnx", | |
"provider": "cpu", | |
"normalize_input": False, | |
} | |
mask_decoder_cfg = { | |
"path": "onnx/efficientvit_l0_mask_decoder.onnx", | |
"provider": "cpu", | |
} | |
predictor = Predictor(image_encoder_cfg, mask_decoder_cfg) | |
# Description | |
title = "<center><strong><font size='8'>Faster Segment Anything(NanoSAM)<font></strong></center>" | |
description_p = """ ## This is a demo of [Faster Segment Anything(NanoSAM) Model](https://github.com/binh234/nanosam). | |
# Instructions for point mode | |
0. Restart by click the Restart button | |
1. Select a point with Add Mask for the foreground (Must) | |
2. Select a point with Remove Area for the background (Optional) | |
3. Click the Start Segmenting. | |
- Github [link](https://github.com/binh234/nanosam) | |
- Model Card [link](https://huggingface.co/dragoswing/nanosam) | |
We will provide box mode soon. | |
Enjoy! | |
""" | |
examples = [ | |
["assets/picture3.jpg"], | |
["assets/picture4.jpg"], | |
["assets/picture5.jpg"], | |
["assets/picture6.jpg"], | |
["assets/picture1.jpg"], | |
["assets/picture2.jpg"], | |
["assets/dogs.jpg"], | |
] | |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" | |
def get_empty_state(): | |
return {"points": [], "point_labels": [], "features": None} | |
def clear(): | |
return None, None, get_empty_state() | |
def set_image(image): | |
state = get_empty_state() | |
start = time.perf_counter() | |
predictor.set_image(image) | |
end = time.perf_counter() | |
print(f"Encoder time: {end - start: .3f}s") | |
state["features"] = predictor.features | |
return state | |
def segment_with_points( | |
image, | |
state, | |
better_quality=False, | |
withContours=True, | |
use_retina=True, | |
mask_random_color=True, | |
): | |
global predictor | |
points = np.asarray(state["points"]) | |
point_labels = np.asarray(state["point_labels"]) | |
if len(points) == 0 and len(point_labels) == 0: | |
raise gr.Error("No points selected") | |
if len(points) != len(point_labels): | |
raise gr.Error("Mismatch length between points and point labels") | |
if state["features"] is None: | |
raise gr.Error( | |
"Image was not set correctly, please wait for a moment after uploading image before drawing points!" | |
) | |
predictor.features = state["features"] | |
img_w, img_h = image.size | |
predictor.original_size = (img_h, img_w) | |
start = time.perf_counter() | |
masks, scores, logits = predictor.predict( | |
points=points, | |
point_labels=point_labels, | |
) | |
end = time.perf_counter() | |
print(f"Decoder time: {end - start: .3f}s") | |
# results = format_results(masks[0], scores[0], logits[0], 0) | |
# annotations, _ = point_prompt(results, points, point_labels, img_h, img_w) | |
# annotations = np.array([annotations]) | |
fig = fast_process( | |
annotations=[masks[0, scores.argmax()] > 0], | |
image=image, | |
scale=1, | |
better_quality=better_quality, | |
mask_random_color=mask_random_color, | |
bbox=None, | |
use_retina=use_retina, | |
withContours=withContours, | |
) | |
# return fig, None | |
return fig | |
def get_points_with_draw(image, label, evt: gr.SelectData, state): | |
x, y = evt.index[0], evt.index[1] | |
point_radius, point_color = 15, ( | |
(255, 255, 0) | |
if label == "Add Mask" | |
else ( | |
255, | |
0, | |
255, | |
) | |
) | |
state["points"].append([x, y]) | |
state["point_labels"].append(1 if label == "Add Mask" else 0) | |
print(x, y, label == "Add Mask") | |
draw = ImageDraw.Draw(image) | |
draw.ellipse( | |
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], | |
fill=point_color, | |
) | |
return image, state | |
cond_img_p = gr.Image(label="Input with points", type="pil", interactive=True) | |
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type="pil") | |
global_points = [] | |
global_point_labels = [] | |
with gr.Blocks(css=css, title="Faster Segment Anything(NanoSAM)") as demo: | |
state = gr.State(value=get_empty_state()) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Title | |
gr.Markdown(title) | |
with gr.Tab("Point mode"): | |
# Images | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=1): | |
cond_img_p.render() | |
with gr.Column(scale=1): | |
segm_img_p.render() | |
# Submit & Clear | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
add_or_remove = gr.Radio( | |
["Add Mask", "Remove Area"], | |
value="Add Mask", | |
) | |
with gr.Column(): | |
segment_btn_p = gr.Button("Start segmenting!", variant="primary") | |
restart_btn_p = gr.Button("Restart", variant="secondary") | |
gr.Markdown("Try some of the examples below ⬇️") | |
gr.Examples( | |
examples=examples, | |
inputs=[cond_img_p], | |
outputs=[state], | |
fn=set_image, | |
run_on_click=True, | |
examples_per_page=4, | |
) | |
with gr.Column(): | |
# Description | |
gr.Markdown(description_p) | |
cond_img_p.upload(set_image, inputs=[cond_img_p], outputs=[state]) | |
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove, state], [cond_img_p, state]) | |
segment_btn_p.click(segment_with_points, [cond_img_p, state], [segm_img_p]) | |
restart_btn_p.click(clear, outputs=[cond_img_p, segm_img_p, state]) | |
demo.queue().launch() | |