import cv2 import os import sys from tqdm import tqdm from utils import resize_image_frame def capture_slides_bg_modeling( video_path, output_dir_path, type_bgsub, history, threshold, MIN_PERCENT_THRESH, MAX_PERCENT_THRESH, ): print(f"Using {type_bgsub} for Background Modeling...") print("---" * 10) if type_bgsub == "GMG": bg_sub = cv2.bgsegm.createBackgroundSubtractorGMG( initializationFrames=history, decisionThreshold=threshold ) elif type_bgsub == "KNN": bg_sub = cv2.createBackgroundSubtractorKNN( history=history, dist2Threshold=threshold, detectShadows=False ) else: raise ValueError("Please choose GMG or KNN as background subtraction method") capture_frame = False screenshots_count = 0 # Capture video frames. cap = cv2.VideoCapture(video_path) if not cap.isOpened(): print("Unable to open video file: ", video_path) sys.exit() num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) prog_bar = tqdm(total=num_frames) # Loop over subsequent frames. while cap.isOpened(): ret, frame = cap.read() if not ret: break # Create a copy of the original frame. orig_frame = frame.copy() # Resize the frame keeping aspect ratio. frame = resize_image_frame(frame, resize_width=640) # Apply each frame through the background subtractor. fg_mask = bg_sub.apply(frame) # Compute the percentage of the Foreground mask." p_non_zero = (cv2.countNonZero(fg_mask) / (1.0 * fg_mask.size)) * 100 # %age of non-zero pixels < MAX_PERCENT_THRESH, implies motion has stopped. # Therefore, capture the frame. if p_non_zero < MAX_PERCENT_THRESH and not capture_frame: capture_frame = True screenshots_count += 1 png_filename = f"{screenshots_count:03}.jpg" out_file_path = os.path.join(output_dir_path, png_filename) cv2.imwrite(out_file_path, orig_frame, [cv2.IMWRITE_JPEG_QUALITY, 75]) prog_bar.set_postfix_str(f"Total Screenshots: {screenshots_count}") # p_non_zero >= MIN_PERCENT_THRESH, indicates motion/animations. # Hence wait till the motion across subsequent frames has settled down. elif capture_frame and p_non_zero >= MIN_PERCENT_THRESH: capture_frame = False prog_bar.update(1) # Release progress bar and video capture object. prog_bar.close() cap.release()