File size: 7,006 Bytes
3166b97 e13c42d 80b1ac5 27c65f9 e13c42d 27c65f9 e13c42d 3166b97 e13c42d 27c65f9 e13c42d 3166b97 e13c42d 3166b97 e13c42d 3166b97 e13c42d 3453933 3166b97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
# %% auto 0
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
# %% app.ipynb 0
import gradio as gr
import pandas as pd
from huggingface_hub import list_models
from diffusers import StableDiffusionPipeline
#submissions_list = list_models(filter=["dreambooth-hackathon", category], full=True)
#spaces_pipeline_load = [submission.id for submission in submissions_list ]
#for ids in spaces_pipeline_load:
# mydict[ids] = StableDiffusionPipeline.from_pretrained(ids) #('ashiqabdulkhader/shiba-dog')
#f"pipeline{ids.split('//')[-1]}" = StableDiffusionPipeline.from_pretrained(ids) #('ashiqabdulkhader/shiba-dog')
#pipeline = StableDiffusionPipeline.from_pretrained("ashiqabdulkhader/shiba-dog") #('pharma/sugar-glider')
#image = pipeline().images[0]
#image
#https://huggingface.co/ashiqabdulkhader/shiba-dog
def filter_species(species):
return gr.Dropdown.update(choices=species_map[species], value=species_map[species][1]), gr.update(visible=True)
# %% app.ipynb 1
def make_clickable_demo(model_name, prompt): #link=None):
#if link is None:
# link = "https://huggingface.co/" + model_name
# Remove user from model name
prompt = "a photo of " + ' '.join(model_name.split('/')[-1].split['-']) + str(prompt)
return gr.Button.update()
def make_clickable_model(model_name, link=None):
if link is None:
link = "https://huggingface.co/" + model_name
#adding functionality for demo
prompt = "a photo of " + ' '.join(model_name.split('/')[-1].split['-']) + str(prompt)
pipeline = StableDiffusionPipeline.from_pretrained(model_name) #("ashiqabdulkhader/shiba-dog") #('pharma/sugar-glider')
image_demo = pipeline(prompt).images[0]
# Remove user from model name
return image_out.Update(value=image_demo, label=model_name.split("/")[-1]) #f'<a target="_blank" href="{link}">{model_name.split("/")[-1]}</a>'
def make_clickable_user(user_id):
link = "https://huggingface.co/" + user_id
return f'<a target="_blank" href="{link}">{user_id}</a>'
# %% app.ipynb 2
def get_submissions(category):
submissions = list_models(filter=["dreambooth-hackathon", category], full=True)
leaderboard_models = []
for submission in submissions:
# user, model, likes
user_id = submission.id.split("/")[0]
leaderboard_models.append(
(
make_clickable_user(user_id),
make_clickable_model(submission.id),
submission.likes,
)
)
df = pd.DataFrame(data=leaderboard_models, columns=["User", "Model", "Likes"])
df.sort_values(by=["Likes"], ascending=False, inplace=True)
df.insert(0, "Rank", list(range(1, len(df) + 1)))
return df
# %% app.ipynb 3
block = gr.Blocks()
with block:
gr.Markdown(
"""# The DreamBooth Hackathon Leaderboard
Welcome to the leaderboard for the DreamBooth Hackathon! This is a community event where particpants **personalise a Stable Diffusion model** by fine-tuning it with a powerful technique called [_DreamBooth_](https://arxiv.org/abs/2208.12242). This technique allows one to implant a subject (e.g. your pet or favourite dish) into the output domain of the model such that it can be synthesized with a _unique identifier_ in the prompt.
This competition is composed of 5 _themes_, where each theme will collect models belong to one of the categories shown in the tabs below. We'll be **giving out prizes to the top 3 most liked models per theme**, and you're encouraged to submit as many models as you want!
For details on how to participate, check out the hackathon's guide [here](https://github.com/huggingface/diffusion-models-class/blob/main/hackathon/README.md).
"""
)
with gr.Row():
prompt_in = gr.Textbox(label="Type in a Prompt. This will be suffixed to 'a photo of <model name>', so prompt accordingly -")
#button_in = gr.Button(label = "Generate Image using this model")
with gr.Tabs():
with gr.TabItem("Animal 🐨"):
with gr.Row():
animal_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions, inputs=gr.Variable("animal"), outputs=animal_data
)
with gr.TabItem("Science 🔬"):
with gr.Row():
science_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions, inputs=gr.Variable("science"), outputs=science_data
)
with gr.TabItem("Food 🍔"):
with gr.Row():
food_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions, inputs=gr.Variable("food"), outputs=food_data
)
with gr.TabItem("Landscape 🏔"):
with gr.Row():
landscape_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions,
inputs=gr.Variable("landscape"),
outputs=landscape_data,
)
with gr.TabItem("Wilcard 🔥"):
with gr.Row():
wildcard_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions,
inputs=gr.Variable("wildcard"),
outputs=wildcard_data,
)
with gr.Row() as your_model_demo :
image_out = gr.Image()
#button_in.click(make_clickable_demo, prompt_in, your_model_demo)
block.load(get_submissions, inputs=gr.Variable("animal"), outputs=animal_data)
block.load(get_submissions, inputs=gr.Variable("science"), outputs=science_data)
block.load(get_submissions, inputs=gr.Variable("food"), outputs=food_data)
block.load(get_submissions, inputs=gr.Variable("landscape"), outputs=landscape_data)
block.load(get_submissions, inputs=gr.Variable("wildcard"), outputs=wildcard_data)
block.launch()
|