Spaces:
Running
on
T4
Running
on
T4
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. | |
# %% auto 0 | |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] | |
# %% app.ipynb 0 | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import list_models | |
from diffusers import StableDiffusionPipeline | |
submissions_list = list_models(filter=["dreambooth-hackathon", category], full=True) | |
spaces_pipeline_load = [submission.id for submission in submissions_list ] | |
#for ids in spaces_pipeline_load: | |
# mydict[ids] = StableDiffusionPipeline.from_pretrained(ids) #('ashiqabdulkhader/shiba-dog') | |
#f"pipeline{ids.split('//')[-1]}" = StableDiffusionPipeline.from_pretrained(ids) #('ashiqabdulkhader/shiba-dog') | |
#pipeline = StableDiffusionPipeline.from_pretrained("ashiqabdulkhader/shiba-dog") #('pharma/sugar-glider') | |
#image = pipeline().images[0] | |
#image | |
#https://huggingface.co/ashiqabdulkhader/shiba-dog | |
def filter_species(species): | |
return gr.Dropdown.update(choices=species_map[species], value=species_map[species][1]), gr.update(visible=True) | |
# %% app.ipynb 1 | |
def make_clickable_demo(model_name, prompt): #link=None): | |
#if link is None: | |
# link = "https://huggingface.co/" + model_name | |
# Remove user from model name | |
prompt = "a photo of " + ' '.join(model_name.split('/')[-1].split['-']) + str(prompt) | |
return gr.Button.update() | |
def make_clickable_model(model_name, link=None): | |
if link is None: | |
link = "https://huggingface.co/" + model_name | |
#adding functionality for demo | |
prompt = "a photo of " + ' '.join(model_name.split('/')[-1].split['-']) + str(prompt) | |
pipeline = StableDiffusionPipeline.from_pretrained(model_name) #("ashiqabdulkhader/shiba-dog") #('pharma/sugar-glider') | |
image_demo = pipeline(prompt).images[0] | |
# Remove user from model name | |
return image_out.Update(value=image_demo, label=model_name.split("/")[-1]) #f'<a target="_blank" href="{link}">{model_name.split("/")[-1]}</a>' | |
def make_clickable_user(user_id): | |
link = "https://huggingface.co/" + user_id | |
return f'<a target="_blank" href="{link}">{user_id}</a>' | |
# %% app.ipynb 2 | |
def get_submissions(category): | |
submissions = list_models(filter=["dreambooth-hackathon", category], full=True) | |
leaderboard_models = [] | |
for submission in submissions: | |
# user, model, likes | |
user_id = submission.id.split("/")[0] | |
leaderboard_models.append( | |
( | |
make_clickable_user(user_id), | |
make_clickable_model(submission.id), | |
submission.likes, | |
) | |
) | |
df = pd.DataFrame(data=leaderboard_models, columns=["User", "Model", "Likes"]) | |
df.sort_values(by=["Likes"], ascending=False, inplace=True) | |
df.insert(0, "Rank", list(range(1, len(df) + 1))) | |
return df | |
# %% app.ipynb 3 | |
block = gr.Blocks() | |
with block: | |
gr.Markdown( | |
"""# The DreamBooth Hackathon Leaderboard | |
Welcome to the leaderboard for the DreamBooth Hackathon! This is a community event where particpants **personalise a Stable Diffusion model** by fine-tuning it with a powerful technique called [_DreamBooth_](https://arxiv.org/abs/2208.12242). This technique allows one to implant a subject (e.g. your pet or favourite dish) into the output domain of the model such that it can be synthesized with a _unique identifier_ in the prompt. | |
This competition is composed of 5 _themes_, where each theme will collect models belong to one of the categories shown in the tabs below. We'll be **giving out prizes to the top 3 most liked models per theme**, and you're encouraged to submit as many models as you want! | |
For details on how to participate, check out the hackathon's guide [here](https://github.com/huggingface/diffusion-models-class/blob/main/hackathon/README.md). | |
""" | |
) | |
with gr.Row(): | |
prompt_in = gr.Textbox(label="Type in a Prompt. This will be suffixed to 'a photo of <model name>', so prompt accordingly -") | |
#button_in = gr.Button(label = "Generate Image using this model") | |
with gr.Tabs(): | |
with gr.TabItem("Animal π¨"): | |
with gr.Row(): | |
animal_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click( | |
get_submissions, inputs=gr.Variable("animal"), outputs=animal_data | |
) | |
with gr.TabItem("Science π¬"): | |
with gr.Row(): | |
science_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click( | |
get_submissions, inputs=gr.Variable("science"), outputs=science_data | |
) | |
with gr.TabItem("Food π"): | |
with gr.Row(): | |
food_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click( | |
get_submissions, inputs=gr.Variable("food"), outputs=food_data | |
) | |
with gr.TabItem("Landscape π"): | |
with gr.Row(): | |
landscape_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click( | |
get_submissions, | |
inputs=gr.Variable("landscape"), | |
outputs=landscape_data, | |
) | |
with gr.TabItem("Wilcard π₯"): | |
with gr.Row(): | |
wildcard_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click( | |
get_submissions, | |
inputs=gr.Variable("wildcard"), | |
outputs=wildcard_data, | |
) | |
with gr.Row() as your_model_demo : | |
image_out = gr.Image() | |
button_in.click(make_clickable_demo, prompt_in, your_model_demo) | |
block.load(get_submissions, inputs=gr.Variable("animal"), outputs=animal_data) | |
block.load(get_submissions, inputs=gr.Variable("science"), outputs=science_data) | |
block.load(get_submissions, inputs=gr.Variable("food"), outputs=food_data) | |
block.load(get_submissions, inputs=gr.Variable("landscape"), outputs=landscape_data) | |
block.load(get_submissions, inputs=gr.Variable("wildcard"), outputs=wildcard_data) | |
block.launch() | |