|
|
|
|
|
|
|
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] |
|
|
|
|
|
import gradio as gr |
|
import pandas as pd |
|
from huggingface_hub import list_models |
|
|
|
from diffusers import StableDiffusionPipeline |
|
|
|
|
|
def get_model_list(category): |
|
submissions_list = list_models(filter=["dreambooth-hackathon", category], full=True) |
|
spaces_pipeline_load = [submission.id for submission in submissions_list ] |
|
return gr.Dropdown.update(choices=spaces_pipeline_load , value=spaces_pipeline_load[5]) |
|
|
|
|
|
def get_initial_prompt(model_nm): |
|
|
|
user_model_nm = model_nm.split('/')[-1] |
|
if '-' in user_model_nm: |
|
prompt = " ".join(user_model_nm.split('-')) |
|
else: |
|
prompt = user_model_nm |
|
return gr.Textbox.update(value="a photo of " + prompt + " ") |
|
|
|
def make_demo(model_name, prompt): |
|
|
|
pipeline = StableDiffusionPipeline.from_pretrained(model_name) |
|
image_demo = pipeline(prompt).images[0] |
|
return image_demo |
|
|
|
|
|
def make_clickable_model(model_name, link=None): |
|
if link is None: |
|
link = "https://huggingface.co/" + model_name |
|
|
|
return f'<a target="_blank" href="{link}">{model_name.split("/")[-1]}</a>' |
|
|
|
def make_clickable_user(user_id): |
|
link = "https://huggingface.co/" + user_id |
|
return f'<a target="_blank" href="{link}">{user_id}</a>' |
|
|
|
|
|
def get_submissions(category, prompt): |
|
submissions = list_models(filter=["dreambooth-hackathon", category], full=True) |
|
leaderboard_models = [] |
|
|
|
for submission in submissions: |
|
|
|
user_id = submission.id.split("/")[0] |
|
model_nm = submission.id.split("/")[-1] |
|
if '-' in model_nm: |
|
model_nm = " ".join(model_nm.split('-')) |
|
|
|
leaderboard_models.append( |
|
( |
|
make_clickable_user(user_id), |
|
make_clickable_model(submission.id, prompt), |
|
submission.likes, |
|
|
|
) |
|
) |
|
|
|
df = pd.DataFrame(data=leaderboard_models, columns=["User", "Model", "Likes", ]) |
|
df.sort_values(by=["Likes"], ascending=False, inplace=True) |
|
df.insert(0, "Rank", list(range(1, len(df) + 1))) |
|
return df |
|
|
|
|
|
block = gr.Blocks() |
|
|
|
with block: |
|
gr.Markdown( |
|
"""# Gradio-powered leaderboard for the DreamBooth Hackathon |
|
|
|
Welcome to this Gradio-powered leaderboard! Select a theme and one of the dreambooth models trained by hacakthon-participants, and key in your prompt as shown (eg., a photo of Shiba dog in a jungle) |
|
<br>If you like a model demo, click on the model name in the table below and UPVOTE the model on Huggingface hub<br><br> |
|
DreamBooth Hackathon - is an ongoing community event where particpants **personalise a Stable Diffusion model** by fine-tuning it with a powerful technique called [_DreamBooth_](https://arxiv.org/abs/2208.12242). This technique allows one to implant a subject into the output domain of the model such that it can be synthesized with a _unique identifier_ (eg., shiba dog) in the prompt. |
|
This competition is composed of 5 _themes_ - Animals, Science, Food, Lanscapes, and Wildcards. For details on how to participate, check out the hackathon's guide [here](https://github.com/huggingface/diffusion-models-class/blob/main/hackathon/README.md). |
|
""" |
|
) |
|
with gr.Row(): |
|
prompt_in = gr.Textbox(label="Type in a Prompt in front of the given text..", value="") |
|
with gr.Column(): |
|
theme = gr.Radio(label="Pick a Theme",choices=["animal","science", "food", "landscape", "wildcard"] ) |
|
model_list = gr.Dropdown(label="Pick a Dreamboooth model", choices = []) |
|
button_in = gr.Button(Value = "Generate Image") |
|
image_out = gr.Image(label="Generated image with your choice of Dreambooth model") |
|
with gr.Tabs(): |
|
with gr.TabItem("Animal π¨"): |
|
with gr.Row(): |
|
animal_data = gr.components.Dataframe( |
|
type="pandas", datatype=["number", "markdown", "markdown", "number","str"], interactive = True |
|
) |
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
data_run.click( |
|
get_submissions, inputs=[gr.Variable("animal"), prompt_in], outputs=animal_data |
|
) |
|
|
|
|
|
with gr.TabItem("Science π¬"): |
|
with gr.Row(): |
|
science_data = gr.components.Dataframe( |
|
type="pandas", datatype=["number", "markdown", "markdown", "number", "str"], interactive = True |
|
) |
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
data_run.click( |
|
get_submissions, inputs=[gr.Variable("science"), prompt_in], outputs=science_data |
|
) |
|
with gr.TabItem("Food π"): |
|
with gr.Row(): |
|
food_data = gr.components.Dataframe( |
|
type="pandas", datatype=["number", "markdown", "markdown", "number", "str"], interactive = True |
|
) |
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
data_run.click( |
|
get_submissions, inputs=[gr.Variable("food"), prompt_in], outputs=food_data |
|
) |
|
with gr.TabItem("Landscape π"): |
|
with gr.Row(): |
|
landscape_data = gr.components.Dataframe( |
|
type="pandas", datatype=["number", "markdown", "markdown", "number", "str"], interactive = True |
|
) |
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
data_run.click( |
|
get_submissions, |
|
inputs=[gr.Variable("landscape"),prompt_in], |
|
outputs=landscape_data, |
|
) |
|
with gr.TabItem("Wilcard π₯"): |
|
with gr.Row(): |
|
wildcard_data = gr.components.Dataframe( |
|
type="pandas", datatype=["number", "markdown", "markdown", "number", "str"], interactive = True |
|
) |
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
data_run.click( |
|
get_submissions, |
|
inputs=[gr.Variable("wildcard"),prompt_in], |
|
outputs=wildcard_data, |
|
) |
|
|
|
theme.change(get_model_list, theme, model_list ) |
|
model_list.change(get_initial_prompt, model_list, prompt_in ) |
|
button_in.click(make_demo, [model_list, prompt_in], image_out) |
|
|
|
block.load(get_submissions, inputs=[gr.Variable("animal"), prompt_in], outputs=animal_data) |
|
block.load(get_submissions, inputs=[gr.Variable("science"), prompt_in], outputs=science_data) |
|
block.load(get_submissions, inputs=[gr.Variable("food"), prompt_in], outputs=food_data) |
|
block.load(get_submissions, inputs=[gr.Variable("landscape"), prompt_in], outputs=landscape_data) |
|
block.load(get_submissions, inputs=[gr.Variable("wildcard"), prompt_in], outputs=wildcard_data) |
|
|
|
|
|
block.launch() |
|
|