Spaces:
Runtime error
Runtime error
""" | |
AnyText: Multilingual Visual Text Generation And Editing | |
Paper: https://arxiv.org/abs/2311.03054 | |
Code: https://github.com/tyxsspa/AnyText | |
Copyright (c) Alibaba, Inc. and its affiliates. | |
""" | |
import os | |
from pathlib import Path | |
from iopaint.model.utils import set_seed | |
from safetensors.torch import load_file | |
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" | |
import torch | |
import re | |
import numpy as np | |
import cv2 | |
import einops | |
from PIL import ImageFont | |
from iopaint.model.anytext.cldm.model import create_model, load_state_dict | |
from iopaint.model.anytext.cldm.ddim_hacked import DDIMSampler | |
from iopaint.model.anytext.utils import ( | |
check_channels, | |
draw_glyph, | |
draw_glyph2, | |
) | |
BBOX_MAX_NUM = 8 | |
PLACE_HOLDER = "*" | |
max_chars = 20 | |
ANYTEXT_CFG = os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), "anytext_sd15.yaml" | |
) | |
def check_limits(tensor): | |
float16_min = torch.finfo(torch.float16).min | |
float16_max = torch.finfo(torch.float16).max | |
# 检查张量中是否有值小于float16的最小值或大于float16的最大值 | |
is_below_min = (tensor < float16_min).any() | |
is_above_max = (tensor > float16_max).any() | |
return is_below_min or is_above_max | |
class AnyTextPipeline: | |
def __init__(self, ckpt_path, font_path, device, use_fp16=True): | |
self.cfg_path = ANYTEXT_CFG | |
self.font_path = font_path | |
self.use_fp16 = use_fp16 | |
self.device = device | |
self.font = ImageFont.truetype(font_path, size=60) | |
self.model = create_model( | |
self.cfg_path, | |
device=self.device, | |
use_fp16=self.use_fp16, | |
) | |
if self.use_fp16: | |
self.model = self.model.half() | |
if Path(ckpt_path).suffix == ".safetensors": | |
state_dict = load_file(ckpt_path, device="cpu") | |
else: | |
state_dict = load_state_dict(ckpt_path, location="cpu") | |
self.model.load_state_dict(state_dict, strict=False) | |
self.model = self.model.eval().to(self.device) | |
self.ddim_sampler = DDIMSampler(self.model, device=self.device) | |
def __call__( | |
self, | |
prompt: str, | |
negative_prompt: str, | |
image: np.ndarray, | |
masked_image: np.ndarray, | |
num_inference_steps: int, | |
strength: float, | |
guidance_scale: float, | |
height: int, | |
width: int, | |
seed: int, | |
sort_priority: str = "y", | |
callback=None, | |
): | |
""" | |
Args: | |
prompt: | |
negative_prompt: | |
image: | |
masked_image: | |
num_inference_steps: | |
strength: | |
guidance_scale: | |
height: | |
width: | |
seed: | |
sort_priority: x: left-right, y: top-down | |
Returns: | |
result: list of images in numpy.ndarray format | |
rst_code: 0: normal -1: error 1:warning | |
rst_info: string of error or warning | |
""" | |
set_seed(seed) | |
str_warning = "" | |
mode = "text-editing" | |
revise_pos = False | |
img_count = 1 | |
ddim_steps = num_inference_steps | |
w = width | |
h = height | |
strength = strength | |
cfg_scale = guidance_scale | |
eta = 0.0 | |
prompt, texts = self.modify_prompt(prompt) | |
if prompt is None and texts is None: | |
return ( | |
None, | |
-1, | |
"You have input Chinese prompt but the translator is not loaded!", | |
"", | |
) | |
n_lines = len(texts) | |
if mode in ["text-generation", "gen"]: | |
edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image | |
elif mode in ["text-editing", "edit"]: | |
if masked_image is None or image is None: | |
return ( | |
None, | |
-1, | |
"Reference image and position image are needed for text editing!", | |
"", | |
) | |
if isinstance(image, str): | |
image = cv2.imread(image)[..., ::-1] | |
assert image is not None, f"Can't read ori_image image from{image}!" | |
elif isinstance(image, torch.Tensor): | |
image = image.cpu().numpy() | |
else: | |
assert isinstance( | |
image, np.ndarray | |
), f"Unknown format of ori_image: {type(image)}" | |
edit_image = image.clip(1, 255) # for mask reason | |
edit_image = check_channels(edit_image) | |
# edit_image = resize_image( | |
# edit_image, max_length=768 | |
# ) # make w h multiple of 64, resize if w or h > max_length | |
h, w = edit_image.shape[:2] # change h, w by input ref_img | |
# preprocess pos_imgs(if numpy, make sure it's white pos in black bg) | |
if masked_image is None: | |
pos_imgs = np.zeros((w, h, 1)) | |
if isinstance(masked_image, str): | |
masked_image = cv2.imread(masked_image)[..., ::-1] | |
assert ( | |
masked_image is not None | |
), f"Can't read draw_pos image from{masked_image}!" | |
pos_imgs = 255 - masked_image | |
elif isinstance(masked_image, torch.Tensor): | |
pos_imgs = masked_image.cpu().numpy() | |
else: | |
assert isinstance( | |
masked_image, np.ndarray | |
), f"Unknown format of draw_pos: {type(masked_image)}" | |
pos_imgs = 255 - masked_image | |
pos_imgs = pos_imgs[..., 0:1] | |
pos_imgs = cv2.convertScaleAbs(pos_imgs) | |
_, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY) | |
# seprate pos_imgs | |
pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority) | |
if len(pos_imgs) == 0: | |
pos_imgs = [np.zeros((h, w, 1))] | |
if len(pos_imgs) < n_lines: | |
if n_lines == 1 and texts[0] == " ": | |
pass # text-to-image without text | |
else: | |
raise RuntimeError( | |
f"{n_lines} text line to draw from prompt, not enough mask area({len(pos_imgs)}) on images" | |
) | |
elif len(pos_imgs) > n_lines: | |
str_warning = f"Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt." | |
# get pre_pos, poly_list, hint that needed for anytext | |
pre_pos = [] | |
poly_list = [] | |
for input_pos in pos_imgs: | |
if input_pos.mean() != 0: | |
input_pos = ( | |
input_pos[..., np.newaxis] | |
if len(input_pos.shape) == 2 | |
else input_pos | |
) | |
poly, pos_img = self.find_polygon(input_pos) | |
pre_pos += [pos_img / 255.0] | |
poly_list += [poly] | |
else: | |
pre_pos += [np.zeros((h, w, 1))] | |
poly_list += [None] | |
np_hint = np.sum(pre_pos, axis=0).clip(0, 1) | |
# prepare info dict | |
info = {} | |
info["glyphs"] = [] | |
info["gly_line"] = [] | |
info["positions"] = [] | |
info["n_lines"] = [len(texts)] * img_count | |
gly_pos_imgs = [] | |
for i in range(len(texts)): | |
text = texts[i] | |
if len(text) > max_chars: | |
str_warning = ( | |
f'"{text}" length > max_chars: {max_chars}, will be cut off...' | |
) | |
text = text[:max_chars] | |
gly_scale = 2 | |
if pre_pos[i].mean() != 0: | |
gly_line = draw_glyph(self.font, text) | |
glyphs = draw_glyph2( | |
self.font, | |
text, | |
poly_list[i], | |
scale=gly_scale, | |
width=w, | |
height=h, | |
add_space=False, | |
) | |
gly_pos_img = cv2.drawContours( | |
glyphs * 255, [poly_list[i] * gly_scale], 0, (255, 255, 255), 1 | |
) | |
if revise_pos: | |
resize_gly = cv2.resize( | |
glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0]) | |
) | |
new_pos = cv2.morphologyEx( | |
(resize_gly * 255).astype(np.uint8), | |
cv2.MORPH_CLOSE, | |
kernel=np.ones( | |
(resize_gly.shape[0] // 10, resize_gly.shape[1] // 10), | |
dtype=np.uint8, | |
), | |
iterations=1, | |
) | |
new_pos = ( | |
new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos | |
) | |
contours, _ = cv2.findContours( | |
new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE | |
) | |
if len(contours) != 1: | |
str_warning = f"Fail to revise position {i} to bounding rect, remain position unchanged..." | |
else: | |
rect = cv2.minAreaRect(contours[0]) | |
poly = np.int0(cv2.boxPoints(rect)) | |
pre_pos[i] = ( | |
cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.0 | |
) | |
gly_pos_img = cv2.drawContours( | |
glyphs * 255, [poly * gly_scale], 0, (255, 255, 255), 1 | |
) | |
gly_pos_imgs += [gly_pos_img] # for show | |
else: | |
glyphs = np.zeros((h * gly_scale, w * gly_scale, 1)) | |
gly_line = np.zeros((80, 512, 1)) | |
gly_pos_imgs += [ | |
np.zeros((h * gly_scale, w * gly_scale, 1)) | |
] # for show | |
pos = pre_pos[i] | |
info["glyphs"] += [self.arr2tensor(glyphs, img_count)] | |
info["gly_line"] += [self.arr2tensor(gly_line, img_count)] | |
info["positions"] += [self.arr2tensor(pos, img_count)] | |
# get masked_x | |
masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint) | |
masked_img = np.transpose(masked_img, (2, 0, 1)) | |
masked_img = torch.from_numpy(masked_img.copy()).float().to(self.device) | |
if self.use_fp16: | |
masked_img = masked_img.half() | |
encoder_posterior = self.model.encode_first_stage(masked_img[None, ...]) | |
masked_x = self.model.get_first_stage_encoding(encoder_posterior).detach() | |
if self.use_fp16: | |
masked_x = masked_x.half() | |
info["masked_x"] = torch.cat([masked_x for _ in range(img_count)], dim=0) | |
hint = self.arr2tensor(np_hint, img_count) | |
cond = self.model.get_learned_conditioning( | |
dict( | |
c_concat=[hint], | |
c_crossattn=[[prompt] * img_count], | |
text_info=info, | |
) | |
) | |
un_cond = self.model.get_learned_conditioning( | |
dict( | |
c_concat=[hint], | |
c_crossattn=[[negative_prompt] * img_count], | |
text_info=info, | |
) | |
) | |
shape = (4, h // 8, w // 8) | |
self.model.control_scales = [strength] * 13 | |
samples, intermediates = self.ddim_sampler.sample( | |
ddim_steps, | |
img_count, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=cfg_scale, | |
unconditional_conditioning=un_cond, | |
callback=callback | |
) | |
if self.use_fp16: | |
samples = samples.half() | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = ( | |
(einops.rearrange(x_samples, "b c h w -> b h w c") * 127.5 + 127.5) | |
.cpu() | |
.numpy() | |
.clip(0, 255) | |
.astype(np.uint8) | |
) | |
results = [x_samples[i] for i in range(img_count)] | |
# if ( | |
# mode == "edit" and False | |
# ): # replace backgound in text editing but not ideal yet | |
# results = [r * np_hint + edit_image * (1 - np_hint) for r in results] | |
# results = [r.clip(0, 255).astype(np.uint8) for r in results] | |
# if len(gly_pos_imgs) > 0 and show_debug: | |
# glyph_bs = np.stack(gly_pos_imgs, axis=2) | |
# glyph_img = np.sum(glyph_bs, axis=2) * 255 | |
# glyph_img = glyph_img.clip(0, 255).astype(np.uint8) | |
# results += [np.repeat(glyph_img, 3, axis=2)] | |
rst_code = 1 if str_warning else 0 | |
return results, rst_code, str_warning | |
def modify_prompt(self, prompt): | |
prompt = prompt.replace("“", '"') | |
prompt = prompt.replace("”", '"') | |
p = '"(.*?)"' | |
strs = re.findall(p, prompt) | |
if len(strs) == 0: | |
strs = [" "] | |
else: | |
for s in strs: | |
prompt = prompt.replace(f'"{s}"', f" {PLACE_HOLDER} ", 1) | |
# if self.is_chinese(prompt): | |
# if self.trans_pipe is None: | |
# return None, None | |
# old_prompt = prompt | |
# prompt = self.trans_pipe(input=prompt + " .")["translation"][:-1] | |
# print(f"Translate: {old_prompt} --> {prompt}") | |
return prompt, strs | |
# def is_chinese(self, text): | |
# text = checker._clean_text(text) | |
# for char in text: | |
# cp = ord(char) | |
# if checker._is_chinese_char(cp): | |
# return True | |
# return False | |
def separate_pos_imgs(self, img, sort_priority, gap=102): | |
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img) | |
components = [] | |
for label in range(1, num_labels): | |
component = np.zeros_like(img) | |
component[labels == label] = 255 | |
components.append((component, centroids[label])) | |
if sort_priority == "y": | |
fir, sec = 1, 0 # top-down first | |
elif sort_priority == "x": | |
fir, sec = 0, 1 # left-right first | |
components.sort(key=lambda c: (c[1][fir] // gap, c[1][sec] // gap)) | |
sorted_components = [c[0] for c in components] | |
return sorted_components | |
def find_polygon(self, image, min_rect=False): | |
contours, hierarchy = cv2.findContours( | |
image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE | |
) | |
max_contour = max(contours, key=cv2.contourArea) # get contour with max area | |
if min_rect: | |
# get minimum enclosing rectangle | |
rect = cv2.minAreaRect(max_contour) | |
poly = np.int0(cv2.boxPoints(rect)) | |
else: | |
# get approximate polygon | |
epsilon = 0.01 * cv2.arcLength(max_contour, True) | |
poly = cv2.approxPolyDP(max_contour, epsilon, True) | |
n, _, xy = poly.shape | |
poly = poly.reshape(n, xy) | |
cv2.drawContours(image, [poly], -1, 255, -1) | |
return poly, image | |
def arr2tensor(self, arr, bs): | |
arr = np.transpose(arr, (2, 0, 1)) | |
_arr = torch.from_numpy(arr.copy()).float().to(self.device) | |
if self.use_fp16: | |
_arr = _arr.half() | |
_arr = torch.stack([_arr for _ in range(bs)], dim=0) | |
return _arr | |