nikunjkdtechnoland
init commit some more add files
e041d7d
import os
import PIL.Image
import cv2
import torch
from diffusers import AutoencoderKL
from loguru import logger
from iopaint.schema import InpaintRequest, ModelType
from .base import DiffusionInpaintModel
from .helper.cpu_text_encoder import CPUTextEncoderWrapper
from .original_sd_configs import get_config_files
from .utils import (
handle_from_pretrained_exceptions,
get_torch_dtype,
enable_low_mem,
is_local_files_only,
)
class SDXL(DiffusionInpaintModel):
name = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
pad_mod = 8
min_size = 512
lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
model_id_or_path = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
def init_model(self, device: torch.device, **kwargs):
from diffusers.pipelines import StableDiffusionXLInpaintPipeline
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
if self.model_info.model_type == ModelType.DIFFUSERS_SDXL:
num_in_channels = 4
else:
num_in_channels = 9
if os.path.isfile(self.model_id_or_path):
self.model = StableDiffusionXLInpaintPipeline.from_single_file(
self.model_id_or_path,
torch_dtype=torch_dtype,
num_in_channels=num_in_channels,
load_safety_checker=False,
config_files=get_config_files()
)
else:
model_kwargs = {
**kwargs.get("pipe_components", {}),
"local_files_only": is_local_files_only(**kwargs),
}
if "vae" not in model_kwargs:
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
)
model_kwargs["vae"] = vae
self.model = handle_from_pretrained_exceptions(
StableDiffusionXLInpaintPipeline.from_pretrained,
pretrained_model_name_or_path=self.model_id_or_path,
torch_dtype=torch_dtype,
variant="fp16",
**model_kwargs
)
enable_low_mem(self.model, kwargs.get("low_mem", False))
if kwargs.get("cpu_offload", False) and use_gpu:
logger.info("Enable sequential cpu offload")
self.model.enable_sequential_cpu_offload(gpu_id=0)
else:
self.model = self.model.to(device)
if kwargs["sd_cpu_textencoder"]:
logger.info("Run Stable Diffusion TextEncoder on CPU")
self.model.text_encoder = CPUTextEncoderWrapper(
self.model.text_encoder, torch_dtype
)
self.model.text_encoder_2 = CPUTextEncoderWrapper(
self.model.text_encoder_2, torch_dtype
)
self.callback = kwargs.pop("callback", None)
def forward(self, image, mask, config: InpaintRequest):
"""Input image and output image have same size
image: [H, W, C] RGB
mask: [H, W, 1] 255 means area to repaint
return: BGR IMAGE
"""
self.set_scheduler(config)
img_h, img_w = image.shape[:2]
output = self.model(
image=PIL.Image.fromarray(image),
prompt=config.prompt,
negative_prompt=config.negative_prompt,
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
num_inference_steps=config.sd_steps,
strength=0.999 if config.sd_strength == 1.0 else config.sd_strength,
guidance_scale=config.sd_guidance_scale,
output_type="np",
callback_on_step_end=self.callback,
height=img_h,
width=img_w,
generator=torch.manual_seed(config.sd_seed),
).images[0]
output = (output * 255).round().astype("uint8")
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output