object-to-object-replace-1 / iopaint /single_processing.py
nikunjkdtechnoland
init commit some more add files
e041d7d
import base64
import io
import json
from pathlib import Path
from typing import Dict, Optional
import cv2
import psutil
from PIL import Image
from loguru import logger
from rich.console import Console
from rich.progress import (
Progress,
SpinnerColumn,
TimeElapsedColumn,
MofNCompleteColumn,
TextColumn,
BarColumn,
TaskProgressColumn,
)
from iopaint.helper import pil_to_bytes_single
from iopaint.model.utils import torch_gc
from iopaint.model_manager import ModelManager
from iopaint.schema import InpaintRequest
import numpy as np
def glob_images(path: Path) -> Dict[str, Path]:
# png/jpg/jpeg
if path.is_file():
return {path.stem: path}
elif path.is_dir():
res = {}
for it in path.glob("*.*"):
if it.suffix.lower() in [".png", ".jpg", ".jpeg"]:
res[it.stem] = it
return res
# def batch_inpaint(
# model: str,
# device,
# image: Path,
# mask: Path,
# config: Optional[Path] = None,
# concat: bool = False,
# ):
# if config is None:
# inpaint_request = InpaintRequest()
# else:
# with open(config, "r", encoding="utf-8") as f:
# inpaint_request = InpaintRequest(**json.load(f))
#
# model_manager = ModelManager(name=model, device=device)
#
# img = cv2.imread(str(image))
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#
# mask_img = cv2.imread(str(mask), cv2.IMREAD_GRAYSCALE)
#
# if mask_img.shape[:2] != img.shape[:2]:
# mask_img = cv2.resize(
# mask_img,
# (img.shape[1], img.shape[0]),
# interpolation=cv2.INTER_NEAREST,
# )
#
# mask_img[mask_img >= 127] = 255
# mask_img[mask_img < 127] = 0
#
# # bgr
# inpaint_result = model_manager(img, mask_img, inpaint_request)
# inpaint_result = cv2.cvtColor(inpaint_result, cv2.COLOR_BGR2RGB)
#
# if concat:
# mask_img = cv2.cvtColor(mask_img, cv2.COLOR_GRAY2RGB)
# inpaint_result = cv2.hconcat([img, mask_img, inpaint_result])
#
# # Convert the NumPy array to PIL Image
# pil_image = Image.fromarray(inpaint_result)
#
# # Encode the PIL Image as base64 string
# with io.BytesIO() as output_buffer:
# pil_image.save(output_buffer, format='PNG')
# base64_image = base64.b64encode(output_buffer.getvalue()).decode('utf-8')
#
# return base64_image
def batch_inpaint(
model: str,
device,
input_base64: str,
mask_base64: str,
config_base64: Optional[str] = None,
concat: bool = False,
):
if config_base64 is None:
inpaint_request = InpaintRequest()
else:
config_json = base64.b64decode(config_base64)
inpaint_request = InpaintRequest(**json.loads(config_json))
model_manager = ModelManager(name=model, device=device)
# Decode input image from base64
input_image_data = base64.b64decode(input_base64)
input_image = cv2.imdecode(np.frombuffer(input_image_data, np.uint8), cv2.IMREAD_COLOR)
# Decode mask image from base64
mask_image_data = base64.b64decode(mask_base64)
mask_image = cv2.imdecode(np.frombuffer(mask_image_data, np.uint8), cv2.IMREAD_GRAYSCALE)
if mask_image.shape[:2] != input_image.shape[:2]:
mask_image = cv2.resize(
mask_image,
(input_image.shape[1], input_image.shape[0]),
interpolation=cv2.INTER_NEAREST,
)
mask_image[mask_image >= 127] = 255
mask_image[mask_image < 127] = 0
# Run inpainting
inpaint_result = model_manager(input_image, mask_image, inpaint_request)
if concat:
mask_image = cv2.cvtColor(mask_image, cv2.COLOR_GRAY2RGB)
inpaint_result = cv2.hconcat([input_image, mask_image, inpaint_result])
# Convert NumPy array to PIL Image
pil_image = Image.fromarray(inpaint_result)
# Encode PIL Image to base64 string
with io.BytesIO() as output_buffer:
pil_image.save(output_buffer, format='PNG')
base64_image = base64.b64encode(output_buffer.getvalue()).decode('utf-8')
return base64_image
def batch_inpaint_cv2(
model: str,
device,
input_base: str,
mask_base: str,
config_base64: Optional[str] = None,
concat: bool = False,
):
if config_base64 is None:
inpaint_request = InpaintRequest()
else:
config_json = base64.b64decode(config_base64)
inpaint_request = InpaintRequest(**json.loads(config_json))
model_manager = ModelManager(name=model, device=device)
# Decode input image from base
input_image = input_base
# Decode mask image from base
mask_image = mask_base
if mask_image.shape[:2] != input_image.shape[:2]:
mask_image = cv2.resize(
mask_image,
(input_image.shape[1], input_image.shape[0]),
interpolation=cv2.INTER_NEAREST,
)
mask_image[mask_image >= 127] = 255
mask_image[mask_image < 127] = 0
# Run inpainting
inpaint_result = model_manager(input_image, mask_image, inpaint_request)
if concat:
mask_image = cv2.cvtColor(mask_image, cv2.COLOR_GRAY2RGB)
inpaint_result = cv2.hconcat([input_image, mask_image, inpaint_result])
return inpaint_result