diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..46f3b49d54a23bc2474776988c3596595c1e5f3e
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2021 Du Ang
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/data/dataset.py b/data/dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..c9e43a9cd2d0ac3aa23f442b0800454f5c2cdae8
--- /dev/null
+++ b/data/dataset.py
@@ -0,0 +1,75 @@
+import sys
+import torch.utils.data as data
+from os import listdir
+from utils.tools import default_loader, is_image_file, normalize
+import os
+
+import torchvision.transforms as transforms
+
+
+class Dataset(data.Dataset):
+    def __init__(self, data_path, image_shape, with_subfolder=False, random_crop=True, return_name=False):
+        super(Dataset, self).__init__()
+        if with_subfolder:
+            self.samples = self._find_samples_in_subfolders(data_path)
+        else:
+            self.samples = [x for x in listdir(data_path) if is_image_file(x)]
+        self.data_path = data_path
+        self.image_shape = image_shape[:-1]
+        self.random_crop = random_crop
+        self.return_name = return_name
+
+    def __getitem__(self, index):
+        path = os.path.join(self.data_path, self.samples[index])
+        img = default_loader(path)
+
+        if self.random_crop:
+            imgw, imgh = img.size
+            if imgh < self.image_shape[0] or imgw < self.image_shape[1]:
+                img = transforms.Resize(min(self.image_shape))(img)
+            img = transforms.RandomCrop(self.image_shape)(img)
+        else:
+            img = transforms.Resize(self.image_shape)(img)
+            img = transforms.RandomCrop(self.image_shape)(img)
+
+        img = transforms.ToTensor()(img)  # turn the image to a tensor
+        img = normalize(img)
+
+        if self.return_name:
+            return self.samples[index], img
+        else:
+            return img
+
+    def _find_samples_in_subfolders(self, dir):
+        """
+        Finds the class folders in a dataset.
+        Args:
+            dir (string): Root directory path.
+        Returns:
+            tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary.
+        Ensures:
+            No class is a subdirectory of another.
+        """
+        if sys.version_info >= (3, 5):
+            # Faster and available in Python 3.5 and above
+            classes = [d.name for d in os.scandir(dir) if d.is_dir()]
+        else:
+            classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
+        classes.sort()
+        class_to_idx = {classes[i]: i for i in range(len(classes))}
+        samples = []
+        for target in sorted(class_to_idx.keys()):
+            d = os.path.join(dir, target)
+            if not os.path.isdir(d):
+                continue
+            for root, _, fnames in sorted(os.walk(d)):
+                for fname in sorted(fnames):
+                    if is_image_file(fname):
+                        path = os.path.join(root, fname)
+                        # item = (path, class_to_idx[target])
+                        # samples.append(item)
+                        samples.append(path)
+        return samples
+
+    def __len__(self):
+        return len(self.samples)
diff --git a/full-stack-server.py b/full-stack-server.py
new file mode 100644
index 0000000000000000000000000000000000000000..95754a6744815152718e37d1a379921ef410e118
--- /dev/null
+++ b/full-stack-server.py
@@ -0,0 +1,231 @@
+import os
+import base64
+import io
+import uuid
+from ultralytics import YOLO
+import cv2
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+import imageio.v2 as imageio
+from trainer import Trainer
+from utils.tools import get_config
+import torch.nn.functional as F
+from iopaint.single_processing import batch_inpaint
+from pathlib import Path
+from flask import Flask, request, jsonify,render_template
+from flask_cors import CORS
+
+app = Flask(__name__)
+CORS(app)
+
+# set current working directory cache instead of default
+os.environ["TORCH_HOME"] = "./pretrained-model"
+os.environ["HUGGINGFACE_HUB_CACHE"] = "./pretrained-model"
+
+
+def resize_image(input_image_base64, width=640, height=640):
+    """Resizes an image from base64 data and returns the resized image as bytes."""
+    try:
+        # Decode base64 string to bytes
+        input_image_data = base64.b64decode(input_image_base64)
+        # Convert bytes to NumPy array
+        img = np.frombuffer(input_image_data, dtype=np.uint8)
+        # Decode NumPy array as an image
+        img = cv2.imdecode(img, cv2.IMREAD_COLOR)
+
+        # Resize while maintaining the aspect ratio
+        shape = img.shape[:2]  # current shape [height, width]
+        new_shape = (width, height)  # the shape to resize to
+
+        # Scale ratio (new / old)
+        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+        ratio = r, r  # width, height ratios
+        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+
+        # Resize the image
+        im = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
+
+        # Pad the image
+        color = (114, 114, 114)  # color used for padding
+        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
+        # divide padding into 2 sides
+        dw /= 2
+        dh /= 2
+        # compute padding on all corners
+        top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+        left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+        im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
+
+        # Convert the resized and padded image to bytes
+        resized_image_bytes = cv2.imencode('.png', im)[1].tobytes()
+        return resized_image_bytes
+
+    except Exception as e:
+        print(f"Error resizing image: {e}")
+        return None  # Or handle differently as needed
+
+
+def load_weights(path, device):
+    model_weights = torch.load(path)
+    return {
+        k: v.to(device)
+        for k, v in model_weights.items()
+    }
+
+
+# Function to convert image to base64
+def convert_image_to_base64(image):
+    # Convert image to bytes
+    _, buffer = cv2.imencode('.png', image)
+    # Convert bytes to base64
+    image_base64 = base64.b64encode(buffer).decode('utf-8')
+    return image_base64
+
+
+def convert_to_base64(image):
+    # Read the image file as binary data
+    image_data = image.read()
+    # Encode the binary data as base64
+    base64_encoded = base64.b64encode(image_data).decode('utf-8')
+    return base64_encoded
+
+
+@app.route('/')
+def index():
+    return render_template('index.html')
+
+
+@app.route('/process_images', methods=['POST'])
+def process_images():
+    # Static paths
+    config_path = Path('configs/config.yaml')
+    model_path = Path('pretrained-model/torch_model.p')
+
+    # Check if the request contains files
+    if 'input_image' not in request.files or 'append_image' not in request.files:
+        return jsonify({'error': 'No files found'}), 419
+
+    # Get the objectName from the request or use default "chair" if not provided
+    default_class = request.form.get('objectName', 'chair')
+
+    # Convert the images to base64
+    try:
+        input_base64 = convert_to_base64(request.files['input_image'])
+        append_base64 = convert_to_base64(request.files['append_image'])
+    except Exception as e:
+        return jsonify({'error': 'Failed to read files'}), 419
+
+    # Resize input image and get base64 data of resized image
+    input_resized_image_bytes = resize_image(input_base64)
+
+    # Convert resized image bytes to base64
+    input_resized_base64 = base64.b64encode(input_resized_image_bytes).decode('utf-8')
+
+    # Decode the resized image from base64 data directly
+    img = cv2.imdecode(np.frombuffer(input_resized_image_bytes, np.uint8), cv2.IMREAD_COLOR)
+
+    if img is None:
+        return jsonify({'error': 'Failed to decode resized image'}), 419
+
+    H, W, _ = img.shape
+    x_point = 0
+    y_point = 0
+    width = 1
+    height = 1
+
+    # Load a model
+    model = YOLO('pretrained-model/yolov8m-seg.pt')  # pretrained YOLOv8m-seg model
+
+    # Run batched inference on a list of images
+    results = model(img, imgsz=(W,H), conf=0.5)  # chair class 56 with confidence >= 0.5
+    names = model.names
+    # print(names)
+
+    class_found = False
+    for result in results:
+        for i, label in enumerate(result.boxes.cls):
+            # Check if the label matches the chair label
+            if names[int(label)] == default_class:
+                class_found = True
+                # Convert the tensor to a numpy array
+                chair_mask_np = result.masks.data[i].numpy()
+
+                kernel = np.ones((5, 5), np.uint8)  # Create a 5x5 kernel for dilation
+                chair_mask_np = cv2.dilate(chair_mask_np, kernel, iterations=2)  # Apply dilation
+
+                # Find contours to get bounding box
+                contours, _ = cv2.findContours((chair_mask_np == 1).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
+
+                # Iterate over contours to find the bounding box of each object
+                for contour in contours:
+                    x, y, w, h = cv2.boundingRect(contour)
+                    x_point = x
+                    y_point = y
+                    width = w
+                    height = h
+
+                # Get the corresponding mask
+                mask = result.masks.data[i].numpy() * 255
+                dilated_mask = cv2.dilate(mask, kernel, iterations=2)  # Apply dilation
+                # Resize the mask to match the dimensions of the original image
+                resized_mask = cv2.resize(dilated_mask, (img.shape[1], img.shape[0]))
+                # Convert mask to base64
+                mask_base64 = convert_image_to_base64(resized_mask)
+
+                # call repainting and merge function
+                output_base64 = repaitingAndMerge(append_base64,str(model_path), str(config_path),width, height, x_point, y_point, input_resized_base64, mask_base64)
+                # Return the output base64 image in the API response
+                return jsonify({'output_base64': output_base64}), 200
+
+    # return class not found in prediction
+    if not class_found:
+        return jsonify({'message': f'{default_class} object not found in the image'}), 200
+
+def repaitingAndMerge(append_image_base64_image, model_path, config_path, width, height, xposition, yposition, input_base64, mask_base64):
+    config = get_config(config_path)
+    device = torch.device("cpu")
+    trainer = Trainer(config)
+    trainer.load_state_dict(load_weights(model_path, device), strict=False)
+    trainer.eval()
+
+    # lama inpainting start
+    print("lama inpainting start")
+    inpaint_result_base64 = batch_inpaint('lama', 'cpu', input_base64, mask_base64)
+    print("lama inpainting end")
+
+    # Decode base64 to bytes
+    inpaint_result_bytes = base64.b64decode(inpaint_result_base64)
+
+    # Convert bytes to NumPy array
+    inpaint_result_np = np.array(Image.open(io.BytesIO(inpaint_result_bytes)))
+
+    # Create PIL Image from NumPy array
+    final_image = Image.fromarray(inpaint_result_np)
+
+    print("merge start")
+    # Decode base64 to binary data
+    decoded_image_data = base64.b64decode(append_image_base64_image)
+    # Convert binary data to a NumPy array
+    append_image = cv2.imdecode(np.frombuffer(decoded_image_data, np.uint8), cv2.IMREAD_UNCHANGED)
+    # Resize the append image while preserving transparency
+    resized_image = cv2.resize(append_image, (width, height), interpolation=cv2.INTER_AREA)
+    # Convert the resized image to RGBA format (assuming it's in BGRA format)
+    resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGRA2RGBA)
+    # Create a PIL Image from the resized image with transparent background
+    append_image_pil = Image.fromarray(resized_image)
+    # Paste the append image onto the final image
+    final_image.paste(append_image_pil, (xposition, yposition), append_image_pil)
+    # Save the resulting image
+    print("merge end")
+    # Convert the final image to base64
+    with io.BytesIO() as output_buffer:
+        final_image.save(output_buffer, format='PNG')
+        output_base64 = base64.b64encode(output_buffer.getvalue()).decode('utf-8')
+
+    return output_base64
+
+
+if __name__ == '__main__':
+    app.run(host='0.0.0.0',debug=True)
diff --git a/iopaint/cli.py b/iopaint/cli.py
new file mode 100644
index 0000000000000000000000000000000000000000..951fbb4e6ae97dbf66175aec8736b95d5ef4c76c
--- /dev/null
+++ b/iopaint/cli.py
@@ -0,0 +1,223 @@
+import webbrowser
+from contextlib import asynccontextmanager
+from pathlib import Path
+from typing import Dict, Optional
+
+import typer
+from fastapi import FastAPI
+from loguru import logger
+from typer import Option
+from typer_config import use_json_config
+
+from iopaint.const import *
+from iopaint.runtime import setup_model_dir, dump_environment_info, check_device
+from iopaint.schema import InteractiveSegModel, Device, RealESRGANModel, RemoveBGModel
+
+typer_app = typer.Typer(pretty_exceptions_show_locals=False, add_completion=False)
+
+
+@typer_app.command(help="Install all plugins dependencies")
+def install_plugins_packages():
+    from iopaint.installer import install_plugins_package
+
+    install_plugins_package()
+
+
+@typer_app.command(help="Download SD/SDXL normal/inpainting model from HuggingFace")
+def download(
+    model: str = Option(
+        ..., help="Model id on HuggingFace e.g: runwayml/stable-diffusion-inpainting"
+    ),
+    model_dir: Path = Option(
+        DEFAULT_MODEL_DIR,
+        help=MODEL_DIR_HELP,
+        file_okay=False,
+        callback=setup_model_dir,
+    ),
+):
+    from iopaint.download import cli_download_model
+
+    cli_download_model(model)
+
+
+@typer_app.command(name="list", help="List downloaded models")
+def list_model(
+    model_dir: Path = Option(
+        DEFAULT_MODEL_DIR,
+        help=MODEL_DIR_HELP,
+        file_okay=False,
+        callback=setup_model_dir,
+    ),
+):
+    from iopaint.download import scan_models
+
+    scanned_models = scan_models()
+    for it in scanned_models:
+        print(it.name)
+
+
+@typer_app.command(help="Batch processing images")
+def run(
+    model: str = Option("lama"),
+    device: Device = Option(Device.cpu),
+    image: Path = Option(..., help="Image folders or file path"),
+    mask: Path = Option(
+        ...,
+        help="Mask folders or file path. "
+        "If it is a directory, the mask images in the directory should have the same name as the original image."
+        "If it is a file, all images will use this mask."
+        "Mask will automatically resize to the same size as the original image.",
+    ),
+    output: Path = Option(..., help="Output directory or file path"),
+    config: Path = Option(
+        None, help="Config file path. You can use dump command to create a base config."
+    ),
+    concat: bool = Option(
+        False, help="Concat original image, mask and output images into one image"
+    ),
+    model_dir: Path = Option(
+        DEFAULT_MODEL_DIR,
+        help=MODEL_DIR_HELP,
+        file_okay=False,
+        callback=setup_model_dir,
+    ),
+):
+    from iopaint.download import cli_download_model, scan_models
+
+    scanned_models = scan_models()
+    if model not in [it.name for it in scanned_models]:
+        logger.info(f"{model} not found in {model_dir}, try to downloading")
+        cli_download_model(model)
+
+    from iopaint.batch_processing import batch_inpaint
+
+    batch_inpaint(model, device, image, mask, output, config, concat)
+
+
+@typer_app.command(help="Start IOPaint server")
+@use_json_config()
+def start(
+    host: str = Option("127.0.0.1"),
+    port: int = Option(8080),
+    inbrowser: bool = Option(False, help=INBROWSER_HELP),
+    model: str = Option(
+        DEFAULT_MODEL,
+        help=f"Erase models: [{', '.join(AVAILABLE_MODELS)}].\n"
+        f"Diffusion models: [{', '.join(DIFFUSION_MODELS)}] or any SD/SDXL normal/inpainting models on HuggingFace.",
+    ),
+    model_dir: Path = Option(
+        DEFAULT_MODEL_DIR,
+        help=MODEL_DIR_HELP,
+        dir_okay=True,
+        file_okay=False,
+        callback=setup_model_dir,
+    ),
+    low_mem: bool = Option(False, help=LOW_MEM_HELP),
+    no_half: bool = Option(False, help=NO_HALF_HELP),
+    cpu_offload: bool = Option(False, help=CPU_OFFLOAD_HELP),
+    disable_nsfw_checker: bool = Option(False, help=DISABLE_NSFW_HELP),
+    cpu_textencoder: bool = Option(False, help=CPU_TEXTENCODER_HELP),
+    local_files_only: bool = Option(False, help=LOCAL_FILES_ONLY_HELP),
+    device: Device = Option(Device.cpu),
+    input: Optional[Path] = Option(None, help=INPUT_HELP),
+    output_dir: Optional[Path] = Option(
+        None, help=OUTPUT_DIR_HELP, dir_okay=True, file_okay=False
+    ),
+    quality: int = Option(95, help=QUALITY_HELP),
+    enable_interactive_seg: bool = Option(False, help=INTERACTIVE_SEG_HELP),
+    interactive_seg_model: InteractiveSegModel = Option(
+        InteractiveSegModel.vit_b, help=INTERACTIVE_SEG_MODEL_HELP
+    ),
+    interactive_seg_device: Device = Option(Device.cpu),
+    enable_remove_bg: bool = Option(False, help=REMOVE_BG_HELP),
+    remove_bg_model: RemoveBGModel = Option(RemoveBGModel.briaai_rmbg_1_4),
+    enable_anime_seg: bool = Option(False, help=ANIMESEG_HELP),
+    enable_realesrgan: bool = Option(False),
+    realesrgan_device: Device = Option(Device.cpu),
+    realesrgan_model: RealESRGANModel = Option(RealESRGANModel.realesr_general_x4v3),
+    enable_gfpgan: bool = Option(False),
+    gfpgan_device: Device = Option(Device.cpu),
+    enable_restoreformer: bool = Option(False),
+    restoreformer_device: Device = Option(Device.cpu),
+):
+    dump_environment_info()
+    device = check_device(device)
+    if input and not input.exists():
+        logger.error(f"invalid --input: {input} not exists")
+        exit(-1)
+    if input and input.is_dir() and not output_dir:
+        logger.error(f"invalid --output-dir: must be set when --input is a directory")
+        exit(-1)
+    if output_dir:
+        output_dir = output_dir.expanduser().absolute()
+        logger.info(f"Image will be saved to {output_dir}")
+        if not output_dir.exists():
+            logger.info(f"Create output directory {output_dir}")
+            output_dir.mkdir(parents=True)
+
+    model_dir = model_dir.expanduser().absolute()
+
+    if local_files_only:
+        os.environ["TRANSFORMERS_OFFLINE"] = "1"
+        os.environ["HF_HUB_OFFLINE"] = "1"
+
+    from iopaint.download import cli_download_model, scan_models
+
+    scanned_models = scan_models()
+    if model not in [it.name for it in scanned_models]:
+        logger.info(f"{model} not found in {model_dir}, try to downloading")
+        cli_download_model(model)
+
+    from iopaint.api import Api
+    from iopaint.schema import ApiConfig
+
+    @asynccontextmanager
+    async def lifespan(app: FastAPI):
+        if inbrowser:
+            webbrowser.open(f"http://localhost:{port}", new=0, autoraise=True)
+        yield
+
+    app = FastAPI(lifespan=lifespan)
+
+    api_config = ApiConfig(
+        host=host,
+        port=port,
+        inbrowser=inbrowser,
+        model=model,
+        no_half=no_half,
+        low_mem=low_mem,
+        cpu_offload=cpu_offload,
+        disable_nsfw_checker=disable_nsfw_checker,
+        local_files_only=local_files_only,
+        cpu_textencoder=cpu_textencoder if device == Device.cuda else False,
+        device=device,
+        input=input,
+        output_dir=output_dir,
+        quality=quality,
+        enable_interactive_seg=enable_interactive_seg,
+        interactive_seg_model=interactive_seg_model,
+        interactive_seg_device=interactive_seg_device,
+        enable_remove_bg=enable_remove_bg,
+        remove_bg_model=remove_bg_model,
+        enable_anime_seg=enable_anime_seg,
+        enable_realesrgan=enable_realesrgan,
+        realesrgan_device=realesrgan_device,
+        realesrgan_model=realesrgan_model,
+        enable_gfpgan=enable_gfpgan,
+        gfpgan_device=gfpgan_device,
+        enable_restoreformer=enable_restoreformer,
+        restoreformer_device=restoreformer_device,
+    )
+    print(api_config.model_dump_json(indent=4))
+    api = Api(app, api_config)
+    api.launch()
+
+
+@typer_app.command(help="Start IOPaint web config page")
+def start_web_config(
+    config_file: Path = Option("config.json"),
+):
+    dump_environment_info()
+    from iopaint.web_config import main
+
+    main(config_file)
diff --git a/iopaint/const.py b/iopaint/const.py
new file mode 100644
index 0000000000000000000000000000000000000000..f7eb1077cc3b6b552e2a1b136b17ea4dbfa08709
--- /dev/null
+++ b/iopaint/const.py
@@ -0,0 +1,121 @@
+import os
+from typing import List
+
+INSTRUCT_PIX2PIX_NAME = "timbrooks/instruct-pix2pix"
+KANDINSKY22_NAME = "kandinsky-community/kandinsky-2-2-decoder-inpaint"
+POWERPAINT_NAME = "Sanster/PowerPaint-V1-stable-diffusion-inpainting"
+ANYTEXT_NAME = "Sanster/AnyText"
+
+
+DIFFUSERS_SD_CLASS_NAME = "StableDiffusionPipeline"
+DIFFUSERS_SD_INPAINT_CLASS_NAME = "StableDiffusionInpaintPipeline"
+DIFFUSERS_SDXL_CLASS_NAME = "StableDiffusionXLPipeline"
+DIFFUSERS_SDXL_INPAINT_CLASS_NAME = "StableDiffusionXLInpaintPipeline"
+
+MPS_UNSUPPORT_MODELS = [
+    "lama",
+    "ldm",
+    "zits",
+    "mat",
+    "fcf",
+    "cv2",
+    "manga",
+]
+
+DEFAULT_MODEL = "lama"
+AVAILABLE_MODELS = ["lama", "ldm", "zits", "mat", "fcf", "manga", "cv2", "migan"]
+DIFFUSION_MODELS = [
+    "runwayml/stable-diffusion-inpainting",
+    "Uminosachi/realisticVisionV51_v51VAE-inpainting",
+    "redstonehero/dreamshaper-inpainting",
+    "Sanster/anything-4.0-inpainting",
+    "diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
+    "Fantasy-Studio/Paint-by-Example",
+    POWERPAINT_NAME,
+    ANYTEXT_NAME,
+]
+
+NO_HALF_HELP = """
+Using full precision(fp32) model.
+If your diffusion model generate result is always black or green, use this argument.
+"""
+
+CPU_OFFLOAD_HELP = """
+Offloads diffusion model's weight to CPU RAM, significantly reducing vRAM usage.
+"""
+
+LOW_MEM_HELP = "Enable attention slicing and vae tiling to save memory."
+
+DISABLE_NSFW_HELP = """
+Disable NSFW checker for diffusion model.
+"""
+
+CPU_TEXTENCODER_HELP = """
+Run diffusion models text encoder on CPU to reduce vRAM usage.
+"""
+
+SD_CONTROLNET_CHOICES: List[str] = [
+    "lllyasviel/control_v11p_sd15_canny",
+    # "lllyasviel/control_v11p_sd15_seg",
+    "lllyasviel/control_v11p_sd15_openpose",
+    "lllyasviel/control_v11p_sd15_inpaint",
+    "lllyasviel/control_v11f1p_sd15_depth",
+]
+
+SD2_CONTROLNET_CHOICES = [
+    "thibaud/controlnet-sd21-canny-diffusers",
+    "thibaud/controlnet-sd21-depth-diffusers",
+    "thibaud/controlnet-sd21-openpose-diffusers",
+]
+
+SDXL_CONTROLNET_CHOICES = [
+    "thibaud/controlnet-openpose-sdxl-1.0",
+    "destitech/controlnet-inpaint-dreamer-sdxl",
+    "diffusers/controlnet-canny-sdxl-1.0",
+    "diffusers/controlnet-canny-sdxl-1.0-mid",
+    "diffusers/controlnet-canny-sdxl-1.0-small",
+    "diffusers/controlnet-depth-sdxl-1.0",
+    "diffusers/controlnet-depth-sdxl-1.0-mid",
+    "diffusers/controlnet-depth-sdxl-1.0-small",
+]
+
+LOCAL_FILES_ONLY_HELP = """
+When loading diffusion models, using local files only, not connect to HuggingFace server.
+"""
+
+DEFAULT_MODEL_DIR = os.path.abspath(
+    os.getenv("XDG_CACHE_HOME", os.path.join(os.path.expanduser("~"), ".cache"))
+)
+#DEFAULT_MODEL_DIR = os.path.abspath("pretrained-models")
+
+MODEL_DIR_HELP = f"""
+Model download directory (by setting XDG_CACHE_HOME environment variable), by default model download to {DEFAULT_MODEL_DIR}
+"""
+
+OUTPUT_DIR_HELP = """
+Result images will be saved to output directory automatically.
+"""
+
+INPUT_HELP = """
+If input is image, it will be loaded by default.
+If input is directory, you can browse and select image in file manager.
+"""
+
+GUI_HELP = """
+Launch Lama Cleaner as desktop app
+"""
+
+QUALITY_HELP = """
+Quality of image encoding, 0-100. Default is 95, higher quality will generate larger file size.
+"""
+
+INTERACTIVE_SEG_HELP = "Enable interactive segmentation using Segment Anything."
+INTERACTIVE_SEG_MODEL_HELP = "Model size: mobile_sam < vit_b < vit_l < vit_h. Bigger model size means better segmentation but slower speed."
+REMOVE_BG_HELP = "Enable remove background plugin. Always run on CPU"
+ANIMESEG_HELP = "Enable anime segmentation plugin. Always run on CPU"
+REALESRGAN_HELP = "Enable realesrgan super resolution"
+GFPGAN_HELP = "Enable GFPGAN face restore. To also enhance background, use with --enable-realesrgan"
+RESTOREFORMER_HELP = "Enable RestoreFormer face restore. To also enhance background, use with --enable-realesrgan"
+GIF_HELP = "Enable GIF plugin. Make GIF to compare original and cleaned image"
+
+INBROWSER_HELP = "Automatically launch IOPaint in a new tab on the default browser"
diff --git a/iopaint/download.py b/iopaint/download.py
new file mode 100644
index 0000000000000000000000000000000000000000..2ebd7fcbf907465708a0a4de0d67c0609d069cb3
--- /dev/null
+++ b/iopaint/download.py
@@ -0,0 +1,294 @@
+import json
+import os
+from functools import lru_cache
+from typing import List
+
+from iopaint.schema import ModelType, ModelInfo
+from loguru import logger
+from pathlib import Path
+
+from iopaint.const import (
+    DEFAULT_MODEL_DIR,
+    DIFFUSERS_SD_CLASS_NAME,
+    DIFFUSERS_SD_INPAINT_CLASS_NAME,
+    DIFFUSERS_SDXL_CLASS_NAME,
+    DIFFUSERS_SDXL_INPAINT_CLASS_NAME,
+    ANYTEXT_NAME,
+)
+from iopaint.model.original_sd_configs import get_config_files
+
+
+def cli_download_model(model: str):
+    from iopaint.model import models
+    from iopaint.model.utils import handle_from_pretrained_exceptions
+
+    if model in models and models[model].is_erase_model:
+        logger.info(f"Downloading {model}...")
+        models[model].download()
+        logger.info(f"Done.")
+    elif model == ANYTEXT_NAME:
+        logger.info(f"Downloading {model}...")
+        models[model].download()
+        logger.info(f"Done.")
+    else:
+        logger.info(f"Downloading model from Huggingface: {model}")
+        from diffusers import DiffusionPipeline
+
+        downloaded_path = handle_from_pretrained_exceptions(
+            DiffusionPipeline.download,
+            pretrained_model_name=model,
+            variant="fp16",
+            resume_download=True,
+        )
+        logger.info(f"Done. Downloaded to {downloaded_path}")
+
+
+def folder_name_to_show_name(name: str) -> str:
+    return name.replace("models--", "").replace("--", "/")
+
+
+@lru_cache(maxsize=512)
+def get_sd_model_type(model_abs_path: str) -> ModelType:
+    if "inpaint" in Path(model_abs_path).name.lower():
+        model_type = ModelType.DIFFUSERS_SD_INPAINT
+    else:
+        # load once to check num_in_channels
+        from diffusers import StableDiffusionInpaintPipeline
+
+        try:
+            StableDiffusionInpaintPipeline.from_single_file(
+                model_abs_path,
+                load_safety_checker=False,
+                num_in_channels=9,
+                config_files=get_config_files(),
+            )
+            model_type = ModelType.DIFFUSERS_SD_INPAINT
+        except ValueError as e:
+            if "Trying to set a tensor of shape torch.Size([320, 4, 3, 3])" in str(e):
+                model_type = ModelType.DIFFUSERS_SD
+            else:
+                raise e
+    return model_type
+
+
+@lru_cache()
+def get_sdxl_model_type(model_abs_path: str) -> ModelType:
+    if "inpaint" in model_abs_path:
+        model_type = ModelType.DIFFUSERS_SDXL_INPAINT
+    else:
+        # load once to check num_in_channels
+        from diffusers import StableDiffusionXLInpaintPipeline
+
+        try:
+            model = StableDiffusionXLInpaintPipeline.from_single_file(
+                model_abs_path,
+                load_safety_checker=False,
+                num_in_channels=9,
+                config_files=get_config_files(),
+            )
+            if model.unet.config.in_channels == 9:
+                # https://github.com/huggingface/diffusers/issues/6610
+                model_type = ModelType.DIFFUSERS_SDXL_INPAINT
+            else:
+                model_type = ModelType.DIFFUSERS_SDXL
+        except ValueError as e:
+            if "Trying to set a tensor of shape torch.Size([320, 4, 3, 3])" in str(e):
+                model_type = ModelType.DIFFUSERS_SDXL
+            else:
+                raise e
+    return model_type
+
+
+def scan_single_file_diffusion_models(cache_dir) -> List[ModelInfo]:
+    cache_dir = Path(cache_dir)
+    stable_diffusion_dir = cache_dir / "stable_diffusion"
+    cache_file = stable_diffusion_dir / "iopaint_cache.json"
+    model_type_cache = {}
+    if cache_file.exists():
+        try:
+            with open(cache_file, "r", encoding="utf-8") as f:
+                model_type_cache = json.load(f)
+                assert isinstance(model_type_cache, dict)
+        except:
+            pass
+
+    res = []
+    for it in stable_diffusion_dir.glob(f"*.*"):
+        if it.suffix not in [".safetensors", ".ckpt"]:
+            continue
+        model_abs_path = str(it.absolute())
+        model_type = model_type_cache.get(it.name)
+        if model_type is None:
+            model_type = get_sd_model_type(model_abs_path)
+        model_type_cache[it.name] = model_type
+        res.append(
+            ModelInfo(
+                name=it.name,
+                path=model_abs_path,
+                model_type=model_type,
+                is_single_file_diffusers=True,
+            )
+        )
+    if stable_diffusion_dir.exists():
+        with open(cache_file, "w", encoding="utf-8") as fw:
+            json.dump(model_type_cache, fw, indent=2, ensure_ascii=False)
+
+    stable_diffusion_xl_dir = cache_dir / "stable_diffusion_xl"
+    sdxl_cache_file = stable_diffusion_xl_dir / "iopaint_cache.json"
+    sdxl_model_type_cache = {}
+    if sdxl_cache_file.exists():
+        try:
+            with open(sdxl_cache_file, "r", encoding="utf-8") as f:
+                sdxl_model_type_cache = json.load(f)
+                assert isinstance(sdxl_model_type_cache, dict)
+        except:
+            pass
+
+    for it in stable_diffusion_xl_dir.glob(f"*.*"):
+        if it.suffix not in [".safetensors", ".ckpt"]:
+            continue
+        model_abs_path = str(it.absolute())
+        model_type = sdxl_model_type_cache.get(it.name)
+        if model_type is None:
+            model_type = get_sdxl_model_type(model_abs_path)
+        sdxl_model_type_cache[it.name] = model_type
+        if stable_diffusion_xl_dir.exists():
+            with open(sdxl_cache_file, "w", encoding="utf-8") as fw:
+                json.dump(sdxl_model_type_cache, fw, indent=2, ensure_ascii=False)
+
+        res.append(
+            ModelInfo(
+                name=it.name,
+                path=model_abs_path,
+                model_type=model_type,
+                is_single_file_diffusers=True,
+            )
+        )
+    return res
+
+
+def scan_inpaint_models(model_dir: Path) -> List[ModelInfo]:
+    res = []
+    from iopaint.model import models
+
+    # logger.info(f"Scanning inpaint models in {model_dir}")
+
+    for name, m in models.items():
+        if m.is_erase_model and m.is_downloaded():
+            res.append(
+                ModelInfo(
+                    name=name,
+                    path=name,
+                    model_type=ModelType.INPAINT,
+                )
+            )
+    return res
+
+
+def scan_diffusers_models() -> List[ModelInfo]:
+    from huggingface_hub.constants import HF_HUB_CACHE
+
+    available_models = []
+    cache_dir = Path(HF_HUB_CACHE)
+    # logger.info(f"Scanning diffusers models in {cache_dir}")
+    diffusers_model_names = []
+    for it in cache_dir.glob("**/*/model_index.json"):
+        with open(it, "r", encoding="utf-8") as f:
+            try:
+                data = json.load(f)
+            except:
+                continue
+
+            _class_name = data["_class_name"]
+            name = folder_name_to_show_name(it.parent.parent.parent.name)
+            if name in diffusers_model_names:
+                continue
+            if "PowerPaint" in name:
+                model_type = ModelType.DIFFUSERS_OTHER
+            elif _class_name == DIFFUSERS_SD_CLASS_NAME:
+                model_type = ModelType.DIFFUSERS_SD
+            elif _class_name == DIFFUSERS_SD_INPAINT_CLASS_NAME:
+                model_type = ModelType.DIFFUSERS_SD_INPAINT
+            elif _class_name == DIFFUSERS_SDXL_CLASS_NAME:
+                model_type = ModelType.DIFFUSERS_SDXL
+            elif _class_name == DIFFUSERS_SDXL_INPAINT_CLASS_NAME:
+                model_type = ModelType.DIFFUSERS_SDXL_INPAINT
+            elif _class_name in [
+                "StableDiffusionInstructPix2PixPipeline",
+                "PaintByExamplePipeline",
+                "KandinskyV22InpaintPipeline",
+                "AnyText",
+            ]:
+                model_type = ModelType.DIFFUSERS_OTHER
+            else:
+                continue
+
+            diffusers_model_names.append(name)
+            available_models.append(
+                ModelInfo(
+                    name=name,
+                    path=name,
+                    model_type=model_type,
+                )
+            )
+    return available_models
+
+
+def _scan_converted_diffusers_models(cache_dir) -> List[ModelInfo]:
+    cache_dir = Path(cache_dir)
+    available_models = []
+    diffusers_model_names = []
+    for it in cache_dir.glob("**/*/model_index.json"):
+        with open(it, "r", encoding="utf-8") as f:
+            try:
+                data = json.load(f)
+            except:
+                logger.error(
+                    f"Failed to load {it}, please try revert from original model or fix model_index.json by hand."
+                )
+                continue
+
+            _class_name = data["_class_name"]
+            name = folder_name_to_show_name(it.parent.name)
+            if name in diffusers_model_names:
+                continue
+            elif _class_name == DIFFUSERS_SD_CLASS_NAME:
+                model_type = ModelType.DIFFUSERS_SD
+            elif _class_name == DIFFUSERS_SD_INPAINT_CLASS_NAME:
+                model_type = ModelType.DIFFUSERS_SD_INPAINT
+            elif _class_name == DIFFUSERS_SDXL_CLASS_NAME:
+                model_type = ModelType.DIFFUSERS_SDXL
+            elif _class_name == DIFFUSERS_SDXL_INPAINT_CLASS_NAME:
+                model_type = ModelType.DIFFUSERS_SDXL_INPAINT
+            else:
+                continue
+
+            diffusers_model_names.append(name)
+            available_models.append(
+                ModelInfo(
+                    name=name,
+                    path=str(it.parent.absolute()),
+                    model_type=model_type,
+                )
+            )
+    return available_models
+
+
+def scan_converted_diffusers_models(cache_dir) -> List[ModelInfo]:
+    cache_dir = Path(cache_dir)
+    available_models = []
+    stable_diffusion_dir = cache_dir / "stable_diffusion"
+    stable_diffusion_xl_dir = cache_dir / "stable_diffusion_xl"
+    available_models.extend(_scan_converted_diffusers_models(stable_diffusion_dir))
+    available_models.extend(_scan_converted_diffusers_models(stable_diffusion_xl_dir))
+    return available_models
+
+
+def scan_models() -> List[ModelInfo]:
+    model_dir = os.getenv("XDG_CACHE_HOME", DEFAULT_MODEL_DIR)
+    available_models = []
+    available_models.extend(scan_inpaint_models(model_dir))
+    available_models.extend(scan_single_file_diffusion_models(model_dir))
+    available_models.extend(scan_diffusers_models())
+    available_models.extend(scan_converted_diffusers_models(model_dir))
+    return available_models
diff --git a/iopaint/file_manager/file_manager.py b/iopaint/file_manager/file_manager.py
new file mode 100644
index 0000000000000000000000000000000000000000..413162cfedb88e9b7dfeed872be45049eaf1ba0f
--- /dev/null
+++ b/iopaint/file_manager/file_manager.py
@@ -0,0 +1,215 @@
+import os
+from io import BytesIO
+from pathlib import Path
+from typing import List
+
+from PIL import Image, ImageOps, PngImagePlugin
+from fastapi import FastAPI, UploadFile, HTTPException
+from starlette.responses import FileResponse
+
+from ..schema import MediasResponse, MediaTab
+
+LARGE_ENOUGH_NUMBER = 100
+PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2)
+from .storage_backends import FilesystemStorageBackend
+from .utils import aspect_to_string, generate_filename, glob_img
+
+
+class FileManager:
+    def __init__(self, app: FastAPI, input_dir: Path, output_dir: Path):
+        self.app = app
+        self.input_dir: Path = input_dir
+        self.output_dir: Path = output_dir
+
+        self.image_dir_filenames = []
+        self.output_dir_filenames = []
+        if not self.thumbnail_directory.exists():
+            self.thumbnail_directory.mkdir(parents=True)
+
+        # fmt: off
+        self.app.add_api_route("/api/v1/medias", self.api_medias, methods=["GET"], response_model=List[MediasResponse])
+        self.app.add_api_route("/api/v1/media_file", self.api_media_file, methods=["GET"])
+        self.app.add_api_route("/api/v1/media_thumbnail_file", self.api_media_thumbnail_file, methods=["GET"])
+        # fmt: on
+
+    def api_medias(self, tab: MediaTab) -> List[MediasResponse]:
+        img_dir = self._get_dir(tab)
+        return self._media_names(img_dir)
+
+    def api_media_file(self, tab: MediaTab, filename: str) -> FileResponse:
+        file_path = self._get_file(tab, filename)
+        return FileResponse(file_path, media_type="image/png")
+
+    # tab=${tab}?filename=${filename.name}?width=${width}&height=${height}
+    def api_media_thumbnail_file(
+        self, tab: MediaTab, filename: str, width: int, height: int
+    ) -> FileResponse:
+        img_dir = self._get_dir(tab)
+        thumb_filename, (width, height) = self.get_thumbnail(
+            img_dir, filename, width=width, height=height
+        )
+        thumbnail_filepath = self.thumbnail_directory / thumb_filename
+        return FileResponse(
+            thumbnail_filepath,
+            headers={
+                "X-Width": str(width),
+                "X-Height": str(height),
+            },
+            media_type="image/jpeg",
+        )
+
+    def _get_dir(self, tab: MediaTab) -> Path:
+        if tab == "input":
+            return self.input_dir
+        elif tab == "output":
+            return self.output_dir
+        else:
+            raise HTTPException(status_code=422, detail=f"tab not found: {tab}")
+
+    def _get_file(self, tab: MediaTab, filename: str) -> Path:
+        file_path = self._get_dir(tab) / filename
+        if not file_path.exists():
+            raise HTTPException(status_code=422, detail=f"file not found: {file_path}")
+        return file_path
+
+    @property
+    def thumbnail_directory(self) -> Path:
+        return self.output_dir / "thumbnails"
+
+    @staticmethod
+    def _media_names(directory: Path) -> List[MediasResponse]:
+        names = sorted([it.name for it in glob_img(directory)])
+        res = []
+        for name in names:
+            path = os.path.join(directory, name)
+            img = Image.open(path)
+            res.append(
+                MediasResponse(
+                    name=name,
+                    height=img.height,
+                    width=img.width,
+                    ctime=os.path.getctime(path),
+                    mtime=os.path.getmtime(path),
+                )
+            )
+        return res
+
+    def get_thumbnail(
+        self, directory: Path, original_filename: str, width, height, **options
+    ):
+        directory = Path(directory)
+        storage = FilesystemStorageBackend(self.app)
+        crop = options.get("crop", "fit")
+        background = options.get("background")
+        quality = options.get("quality", 90)
+
+        original_path, original_filename = os.path.split(original_filename)
+        original_filepath = os.path.join(directory, original_path, original_filename)
+        image = Image.open(BytesIO(storage.read(original_filepath)))
+
+        # keep ratio resize
+        if not width and not height:
+            width = 256
+
+        if width != 0:
+            height = int(image.height * width / image.width)
+        else:
+            width = int(image.width * height / image.height)
+
+        thumbnail_size = (width, height)
+
+        thumbnail_filename = generate_filename(
+            directory,
+            original_filename,
+            aspect_to_string(thumbnail_size),
+            crop,
+            background,
+            quality,
+        )
+
+        thumbnail_filepath = os.path.join(
+            self.thumbnail_directory, original_path, thumbnail_filename
+        )
+
+        if storage.exists(thumbnail_filepath):
+            return thumbnail_filepath, (width, height)
+
+        try:
+            image.load()
+        except (IOError, OSError):
+            self.app.logger.warning("Thumbnail not load image: %s", original_filepath)
+            return thumbnail_filepath, (width, height)
+
+        # get original image format
+        options["format"] = options.get("format", image.format)
+
+        image = self._create_thumbnail(
+            image, thumbnail_size, crop, background=background
+        )
+
+        raw_data = self.get_raw_data(image, **options)
+        storage.save(thumbnail_filepath, raw_data)
+
+        return thumbnail_filepath, (width, height)
+
+    def get_raw_data(self, image, **options):
+        data = {
+            "format": self._get_format(image, **options),
+            "quality": options.get("quality", 90),
+        }
+
+        _file = BytesIO()
+        image.save(_file, **data)
+        return _file.getvalue()
+
+    @staticmethod
+    def colormode(image, colormode="RGB"):
+        if colormode == "RGB" or colormode == "RGBA":
+            if image.mode == "RGBA":
+                return image
+            if image.mode == "LA":
+                return image.convert("RGBA")
+            return image.convert(colormode)
+
+        if colormode == "GRAY":
+            return image.convert("L")
+
+        return image.convert(colormode)
+
+    @staticmethod
+    def background(original_image, color=0xFF):
+        size = (max(original_image.size),) * 2
+        image = Image.new("L", size, color)
+        image.paste(
+            original_image,
+            tuple(map(lambda x: (x[0] - x[1]) / 2, zip(size, original_image.size))),
+        )
+
+        return image
+
+    def _get_format(self, image, **options):
+        if options.get("format"):
+            return options.get("format")
+        if image.format:
+            return image.format
+
+        return "JPEG"
+
+    def _create_thumbnail(self, image, size, crop="fit", background=None):
+        try:
+            resample = Image.Resampling.LANCZOS
+        except AttributeError:  # pylint: disable=raise-missing-from
+            resample = Image.ANTIALIAS
+
+        if crop == "fit":
+            image = ImageOps.fit(image, size, resample)
+        else:
+            image = image.copy()
+            image.thumbnail(size, resample=resample)
+
+        if background is not None:
+            image = self.background(image)
+
+        image = self.colormode(image)
+
+        return image
diff --git a/iopaint/helper.py b/iopaint/helper.py
new file mode 100644
index 0000000000000000000000000000000000000000..80dafb416b158f585fbc4f9e5b12fd65fb1a941a
--- /dev/null
+++ b/iopaint/helper.py
@@ -0,0 +1,425 @@
+import base64
+import imghdr
+import io
+import os
+import sys
+from typing import List, Optional, Dict, Tuple
+
+from urllib.parse import urlparse
+import cv2
+from PIL import Image, ImageOps, PngImagePlugin
+import numpy as np
+import torch
+from iopaint.const import MPS_UNSUPPORT_MODELS
+from loguru import logger
+from torch.hub import download_url_to_file, get_dir
+import hashlib
+
+
+def md5sum(filename):
+    md5 = hashlib.md5()
+    with open(filename, "rb") as f:
+        for chunk in iter(lambda: f.read(128 * md5.block_size), b""):
+            md5.update(chunk)
+    return md5.hexdigest()
+
+
+def switch_mps_device(model_name, device):
+    if model_name in MPS_UNSUPPORT_MODELS and str(device) == "mps":
+        logger.info(f"{model_name} not support mps, switch to cpu")
+        return torch.device("cpu")
+    return device
+
+
+def get_cache_path_by_url(url):
+    parts = urlparse(url)
+    hub_dir = get_dir()
+    model_dir = os.path.join(hub_dir, "checkpoints")
+    if not os.path.isdir(model_dir):
+        os.makedirs(model_dir)
+    filename = os.path.basename(parts.path)
+    cached_file = os.path.join(model_dir, filename)
+    return cached_file
+
+def get_cache_path_by_local(url):
+    root_path = os.getcwd()
+    model_path = os.path.join(root_path, 'pretrained-model', 'big-lama.pt')
+    return model_path
+
+def download_model(url, model_md5: str = None):
+    cached_file = get_cache_path_by_url(url)
+    # cached_file = get_cache_path_by_local(url)
+    if not os.path.exists(cached_file):
+        sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
+        hash_prefix = None
+        download_url_to_file(url, cached_file, hash_prefix, progress=True)
+        if model_md5:
+            _md5 = md5sum(cached_file)
+            if model_md5 == _md5:
+                logger.info(f"Download model success, md5: {_md5}")
+            else:
+                try:
+                    os.remove(cached_file)
+                    logger.error(
+                        f"Model md5: {_md5}, expected md5: {model_md5}, wrong model deleted. Please restart iopaint."
+                        f"If you still have errors, please try download model manually first https://lama-cleaner-docs.vercel.app/install/download_model_manually.\n"
+                    )
+                except:
+                    logger.error(
+                        f"Model md5: {_md5}, expected md5: {model_md5}, please delete {cached_file} and restart iopaint."
+                    )
+                exit(-1)
+
+    return cached_file
+
+
+def ceil_modulo(x, mod):
+    if x % mod == 0:
+        return x
+    return (x // mod + 1) * mod
+
+
+def handle_error(model_path, model_md5, e):
+    _md5 = md5sum(model_path)
+    if _md5 != model_md5:
+        try:
+            os.remove(model_path)
+            logger.error(
+                f"Model md5: {_md5}, expected md5: {model_md5}, wrong model deleted. Please restart iopaint."
+                f"If you still have errors, please try download model manually first https://lama-cleaner-docs.vercel.app/install/download_model_manually.\n"
+            )
+        except:
+            logger.error(
+                f"Model md5: {_md5}, expected md5: {model_md5}, please delete {model_path} and restart iopaint."
+            )
+    else:
+        logger.error(
+            f"Failed to load model {model_path},"
+            f"please submit an issue at https://github.com/Sanster/lama-cleaner/issues and include a screenshot of the error:\n{e}"
+        )
+    exit(-1)
+
+
+def load_jit_model(url_or_path, device, model_md5: str):
+    if os.path.exists(url_or_path):
+        model_path = url_or_path
+    else:
+        model_path = download_model(url_or_path, model_md5)
+
+    logger.info(f"Loading model from: {model_path}")
+    try:
+        model = torch.jit.load(model_path, map_location="cpu").to(device)
+    except Exception as e:
+        handle_error(model_path, model_md5, e)
+    model.eval()
+    return model
+
+
+def load_model(model: torch.nn.Module, url_or_path, device, model_md5):
+    if os.path.exists(url_or_path):
+        model_path = url_or_path
+    else:
+        model_path = download_model(url_or_path, model_md5)
+
+    try:
+        logger.info(f"Loading model from: {model_path}")
+        state_dict = torch.load(model_path, map_location="cpu")
+        model.load_state_dict(state_dict, strict=True)
+        model.to(device)
+    except Exception as e:
+        handle_error(model_path, model_md5, e)
+    model.eval()
+    return model
+
+
+def numpy_to_bytes(image_numpy: np.ndarray, ext: str) -> bytes:
+    data = cv2.imencode(
+        f".{ext}",
+        image_numpy,
+        [int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0],
+    )[1]
+    image_bytes = data.tobytes()
+    return image_bytes
+
+
+def pil_to_bytes(pil_img, ext: str, quality: int = 95, infos={}) -> bytes:
+    with io.BytesIO() as output:
+        kwargs = {k: v for k, v in infos.items() if v is not None}
+        if ext == "jpg":
+            ext = "jpeg"
+        if "png" == ext.lower() and "parameters" in kwargs:
+            pnginfo_data = PngImagePlugin.PngInfo()
+            pnginfo_data.add_text("parameters", kwargs["parameters"])
+            kwargs["pnginfo"] = pnginfo_data
+
+        pil_img.save(output, format=ext, quality=quality, **kwargs)
+        image_bytes = output.getvalue()
+    return image_bytes
+
+def pil_to_bytes_single(pil_img, ext: str, quality: int = 95, infos=None) -> bytes:
+    infos = infos or {}  # Use an empty dictionary if infos is None
+    with io.BytesIO() as output:
+        kwargs = {k: v for k, v in infos.items() if v is not None}
+        if ext == "jpg":
+            ext = "jpeg"
+        if "png" == ext.lower() and "parameters" in kwargs:
+            pnginfo_data = PngImagePlugin.PngInfo()
+            pnginfo_data.add_text("parameters", kwargs["parameters"])
+            kwargs["pnginfo"] = pnginfo_data
+
+        pil_img.save(output, format=ext, quality=quality, **kwargs)
+        image_bytes = output.getvalue()
+    return image_bytes
+
+
+def load_img(img_bytes, gray: bool = False, return_info: bool = False):
+    alpha_channel = None
+    image = Image.open(io.BytesIO(img_bytes))
+
+    if return_info:
+        infos = image.info
+
+    try:
+        image = ImageOps.exif_transpose(image)
+    except:
+        pass
+
+    if gray:
+        image = image.convert("L")
+        np_img = np.array(image)
+    else:
+        if image.mode == "RGBA":
+            np_img = np.array(image)
+            alpha_channel = np_img[:, :, -1]
+            np_img = cv2.cvtColor(np_img, cv2.COLOR_RGBA2RGB)
+        else:
+            image = image.convert("RGB")
+            np_img = np.array(image)
+
+    if return_info:
+        return np_img, alpha_channel, infos
+    return np_img, alpha_channel
+
+
+def norm_img(np_img):
+    if len(np_img.shape) == 2:
+        np_img = np_img[:, :, np.newaxis]
+    np_img = np.transpose(np_img, (2, 0, 1))
+    np_img = np_img.astype("float32") / 255
+    return np_img
+
+
+def resize_max_size(
+    np_img, size_limit: int, interpolation=cv2.INTER_CUBIC
+) -> np.ndarray:
+    # Resize image's longer size to size_limit if longer size larger than size_limit
+    h, w = np_img.shape[:2]
+    if max(h, w) > size_limit:
+        ratio = size_limit / max(h, w)
+        new_w = int(w * ratio + 0.5)
+        new_h = int(h * ratio + 0.5)
+        return cv2.resize(np_img, dsize=(new_w, new_h), interpolation=interpolation)
+    else:
+        return np_img
+
+
+def pad_img_to_modulo(
+    img: np.ndarray, mod: int, square: bool = False, min_size: Optional[int] = None
+):
+    """
+
+    Args:
+        img: [H, W, C]
+        mod:
+        square: 是否为正方形
+        min_size:
+
+    Returns:
+
+    """
+    if len(img.shape) == 2:
+        img = img[:, :, np.newaxis]
+    height, width = img.shape[:2]
+    out_height = ceil_modulo(height, mod)
+    out_width = ceil_modulo(width, mod)
+
+    if min_size is not None:
+        assert min_size % mod == 0
+        out_width = max(min_size, out_width)
+        out_height = max(min_size, out_height)
+
+    if square:
+        max_size = max(out_height, out_width)
+        out_height = max_size
+        out_width = max_size
+
+    return np.pad(
+        img,
+        ((0, out_height - height), (0, out_width - width), (0, 0)),
+        mode="symmetric",
+    )
+
+
+def boxes_from_mask(mask: np.ndarray) -> List[np.ndarray]:
+    """
+    Args:
+        mask: (h, w, 1)  0~255
+
+    Returns:
+
+    """
+    height, width = mask.shape[:2]
+    _, thresh = cv2.threshold(mask, 127, 255, 0)
+    contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
+
+    boxes = []
+    for cnt in contours:
+        x, y, w, h = cv2.boundingRect(cnt)
+        box = np.array([x, y, x + w, y + h]).astype(int)
+
+        box[::2] = np.clip(box[::2], 0, width)
+        box[1::2] = np.clip(box[1::2], 0, height)
+        boxes.append(box)
+
+    return boxes
+
+
+def only_keep_largest_contour(mask: np.ndarray) -> List[np.ndarray]:
+    """
+    Args:
+        mask: (h, w)  0~255
+
+    Returns:
+
+    """
+    _, thresh = cv2.threshold(mask, 127, 255, 0)
+    contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
+
+    max_area = 0
+    max_index = -1
+    for i, cnt in enumerate(contours):
+        area = cv2.contourArea(cnt)
+        if area > max_area:
+            max_area = area
+            max_index = i
+
+    if max_index != -1:
+        new_mask = np.zeros_like(mask)
+        return cv2.drawContours(new_mask, contours, max_index, 255, -1)
+    else:
+        return mask
+
+
+def is_mac():
+    return sys.platform == "darwin"
+
+
+def get_image_ext(img_bytes):
+    w = imghdr.what("", img_bytes)
+    if w is None:
+        w = "jpeg"
+    return w
+
+
+def decode_base64_to_image(
+    encoding: str, gray=False
+) -> Tuple[np.array, Optional[np.array], Dict]:
+    if encoding.startswith("data:image/") or encoding.startswith(
+        "data:application/octet-stream;base64,"
+    ):
+        encoding = encoding.split(";")[1].split(",")[1]
+    image = Image.open(io.BytesIO(base64.b64decode(encoding)))
+
+    alpha_channel = None
+    try:
+        image = ImageOps.exif_transpose(image)
+    except:
+        pass
+    # exif_transpose will remove exif rotate info,we must call image.info after exif_transpose
+    infos = image.info
+
+    if gray:
+        image = image.convert("L")
+        np_img = np.array(image)
+    else:
+        if image.mode == "RGBA":
+            np_img = np.array(image)
+            alpha_channel = np_img[:, :, -1]
+            np_img = cv2.cvtColor(np_img, cv2.COLOR_RGBA2RGB)
+        else:
+            image = image.convert("RGB")
+            np_img = np.array(image)
+
+    return np_img, alpha_channel, infos
+
+
+def encode_pil_to_base64(image: Image, quality: int, infos: Dict) -> bytes:
+    img_bytes = pil_to_bytes(
+        image,
+        "png",
+        quality=quality,
+        infos=infos,
+    )
+    return base64.b64encode(img_bytes)
+
+
+def concat_alpha_channel(rgb_np_img, alpha_channel) -> np.ndarray:
+    if alpha_channel is not None:
+        if alpha_channel.shape[:2] != rgb_np_img.shape[:2]:
+            alpha_channel = cv2.resize(
+                alpha_channel, dsize=(rgb_np_img.shape[1], rgb_np_img.shape[0])
+            )
+        rgb_np_img = np.concatenate(
+            (rgb_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
+        )
+    return rgb_np_img
+
+
+def adjust_mask(mask: np.ndarray, kernel_size: int, operate):
+    # fronted brush color "ffcc00bb"
+    # kernel_size = kernel_size*2+1
+    mask[mask >= 127] = 255
+    mask[mask < 127] = 0
+
+    if operate == "reverse":
+        mask = 255 - mask
+    else:
+        kernel = cv2.getStructuringElement(
+            cv2.MORPH_ELLIPSE, (2 * kernel_size + 1, 2 * kernel_size + 1)
+        )
+        if operate == "expand":
+            mask = cv2.dilate(
+                mask,
+                kernel,
+                iterations=1,
+            )
+        else:
+            mask = cv2.erode(
+                mask,
+                kernel,
+                iterations=1,
+            )
+    res_mask = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
+    res_mask[mask > 128] = [255, 203, 0, int(255 * 0.73)]
+    res_mask = cv2.cvtColor(res_mask, cv2.COLOR_BGRA2RGBA)
+    return res_mask
+
+
+def gen_frontend_mask(bgr_or_gray_mask):
+    if len(bgr_or_gray_mask.shape) == 3 and bgr_or_gray_mask.shape[2] != 1:
+        bgr_or_gray_mask = cv2.cvtColor(bgr_or_gray_mask, cv2.COLOR_BGR2GRAY)
+
+    # fronted brush color "ffcc00bb"
+    # TODO: how to set kernel size?
+    kernel_size = 9
+    bgr_or_gray_mask = cv2.dilate(
+        bgr_or_gray_mask,
+        np.ones((kernel_size, kernel_size), np.uint8),
+        iterations=1,
+    )
+    res_mask = np.zeros(
+        (bgr_or_gray_mask.shape[0], bgr_or_gray_mask.shape[1], 4), dtype=np.uint8
+    )
+    res_mask[bgr_or_gray_mask > 128] = [255, 203, 0, int(255 * 0.73)]
+    res_mask = cv2.cvtColor(res_mask, cv2.COLOR_BGRA2RGBA)
+    return res_mask
diff --git a/iopaint/installer.py b/iopaint/installer.py
new file mode 100644
index 0000000000000000000000000000000000000000..f255e33548d4fb561e753fb96961d6e2b2a9e446
--- /dev/null
+++ b/iopaint/installer.py
@@ -0,0 +1,12 @@
+import subprocess
+import sys
+
+
+def install(package):
+    subprocess.check_call([sys.executable, "-m", "pip", "install", package])
+
+
+def install_plugins_package():
+    install("rembg")
+    install("realesrgan")
+    install("gfpgan")
diff --git a/iopaint/model/anytext/cldm/cldm.py b/iopaint/model/anytext/cldm/cldm.py
new file mode 100644
index 0000000000000000000000000000000000000000..ad9692a458e027c2ae77d7ca7334b8deaa438393
--- /dev/null
+++ b/iopaint/model/anytext/cldm/cldm.py
@@ -0,0 +1,630 @@
+import os
+from pathlib import Path
+
+import einops
+import torch
+import torch as th
+import torch.nn as nn
+import copy
+from easydict import EasyDict as edict
+
+from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
+    conv_nd,
+    linear,
+    zero_module,
+    timestep_embedding,
+)
+
+from einops import rearrange, repeat
+from iopaint.model.anytext.ldm.modules.attention import SpatialTransformer
+from iopaint.model.anytext.ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
+from iopaint.model.anytext.ldm.models.diffusion.ddpm import LatentDiffusion
+from iopaint.model.anytext.ldm.util import log_txt_as_img, exists, instantiate_from_config
+from iopaint.model.anytext.ldm.models.diffusion.ddim import DDIMSampler
+from iopaint.model.anytext.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
+from .recognizer import TextRecognizer, create_predictor
+
+CURRENT_DIR = Path(os.path.dirname(os.path.abspath(__file__)))
+
+
+def count_parameters(model):
+    return sum(p.numel() for p in model.parameters() if p.requires_grad)
+
+
+class ControlledUnetModel(UNetModel):
+    def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
+        hs = []
+        with torch.no_grad():
+            t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
+            if self.use_fp16:
+                t_emb = t_emb.half()
+            emb = self.time_embed(t_emb)
+            h = x.type(self.dtype)
+            for module in self.input_blocks:
+                h = module(h, emb, context)
+                hs.append(h)
+            h = self.middle_block(h, emb, context)
+
+        if control is not None:
+            h += control.pop()
+
+        for i, module in enumerate(self.output_blocks):
+            if only_mid_control or control is None:
+                h = torch.cat([h, hs.pop()], dim=1)
+            else:
+                h = torch.cat([h, hs.pop() + control.pop()], dim=1)
+            h = module(h, emb, context)
+
+        h = h.type(x.dtype)
+        return self.out(h)
+
+
+class ControlNet(nn.Module):
+    def __init__(
+            self,
+            image_size,
+            in_channels,
+            model_channels,
+            glyph_channels,
+            position_channels,
+            num_res_blocks,
+            attention_resolutions,
+            dropout=0,
+            channel_mult=(1, 2, 4, 8),
+            conv_resample=True,
+            dims=2,
+            use_checkpoint=False,
+            use_fp16=False,
+            num_heads=-1,
+            num_head_channels=-1,
+            num_heads_upsample=-1,
+            use_scale_shift_norm=False,
+            resblock_updown=False,
+            use_new_attention_order=False,
+            use_spatial_transformer=False,  # custom transformer support
+            transformer_depth=1,  # custom transformer support
+            context_dim=None,  # custom transformer support
+            n_embed=None,  # custom support for prediction of discrete ids into codebook of first stage vq model
+            legacy=True,
+            disable_self_attentions=None,
+            num_attention_blocks=None,
+            disable_middle_self_attn=False,
+            use_linear_in_transformer=False,
+    ):
+        super().__init__()
+        if use_spatial_transformer:
+            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
+
+        if context_dim is not None:
+            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
+            from omegaconf.listconfig import ListConfig
+            if type(context_dim) == ListConfig:
+                context_dim = list(context_dim)
+
+        if num_heads_upsample == -1:
+            num_heads_upsample = num_heads
+
+        if num_heads == -1:
+            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
+
+        if num_head_channels == -1:
+            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
+        self.dims = dims
+        self.image_size = image_size
+        self.in_channels = in_channels
+        self.model_channels = model_channels
+        if isinstance(num_res_blocks, int):
+            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
+        else:
+            if len(num_res_blocks) != len(channel_mult):
+                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
+                                 "as a list/tuple (per-level) with the same length as channel_mult")
+            self.num_res_blocks = num_res_blocks
+        if disable_self_attentions is not None:
+            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
+            assert len(disable_self_attentions) == len(channel_mult)
+        if num_attention_blocks is not None:
+            assert len(num_attention_blocks) == len(self.num_res_blocks)
+            assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
+            print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
+                  f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
+                  f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
+                  f"attention will still not be set.")
+        self.attention_resolutions = attention_resolutions
+        self.dropout = dropout
+        self.channel_mult = channel_mult
+        self.conv_resample = conv_resample
+        self.use_checkpoint = use_checkpoint
+        self.use_fp16 = use_fp16
+        self.dtype = th.float16 if use_fp16 else th.float32
+        self.num_heads = num_heads
+        self.num_head_channels = num_head_channels
+        self.num_heads_upsample = num_heads_upsample
+        self.predict_codebook_ids = n_embed is not None
+
+        time_embed_dim = model_channels * 4
+        self.time_embed = nn.Sequential(
+            linear(model_channels, time_embed_dim),
+            nn.SiLU(),
+            linear(time_embed_dim, time_embed_dim),
+        )
+
+        self.input_blocks = nn.ModuleList(
+            [
+                TimestepEmbedSequential(
+                    conv_nd(dims, in_channels, model_channels, 3, padding=1)
+                )
+            ]
+        )
+        self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
+
+        self.glyph_block = TimestepEmbedSequential(
+            conv_nd(dims, glyph_channels, 8, 3, padding=1),
+            nn.SiLU(),
+            conv_nd(dims, 8, 8, 3, padding=1),
+            nn.SiLU(),
+            conv_nd(dims, 8, 16, 3, padding=1, stride=2),
+            nn.SiLU(),
+            conv_nd(dims, 16, 16, 3, padding=1),
+            nn.SiLU(),
+            conv_nd(dims, 16, 32, 3, padding=1, stride=2),
+            nn.SiLU(),
+            conv_nd(dims, 32, 32, 3, padding=1),
+            nn.SiLU(),
+            conv_nd(dims, 32, 96, 3, padding=1, stride=2),
+            nn.SiLU(),
+            conv_nd(dims, 96, 96, 3, padding=1),
+            nn.SiLU(),
+            conv_nd(dims, 96, 256, 3, padding=1, stride=2),
+            nn.SiLU(),
+        )
+
+        self.position_block = TimestepEmbedSequential(
+            conv_nd(dims, position_channels, 8, 3, padding=1),
+            nn.SiLU(),
+            conv_nd(dims, 8, 8, 3, padding=1),
+            nn.SiLU(),
+            conv_nd(dims, 8, 16, 3, padding=1, stride=2),
+            nn.SiLU(),
+            conv_nd(dims, 16, 16, 3, padding=1),
+            nn.SiLU(),
+            conv_nd(dims, 16, 32, 3, padding=1, stride=2),
+            nn.SiLU(),
+            conv_nd(dims, 32, 32, 3, padding=1),
+            nn.SiLU(),
+            conv_nd(dims, 32, 64, 3, padding=1, stride=2),
+            nn.SiLU(),
+        )
+
+        self.fuse_block = zero_module(conv_nd(dims, 256+64+4, model_channels, 3, padding=1))
+
+        self._feature_size = model_channels
+        input_block_chans = [model_channels]
+        ch = model_channels
+        ds = 1
+        for level, mult in enumerate(channel_mult):
+            for nr in range(self.num_res_blocks[level]):
+                layers = [
+                    ResBlock(
+                        ch,
+                        time_embed_dim,
+                        dropout,
+                        out_channels=mult * model_channels,
+                        dims=dims,
+                        use_checkpoint=use_checkpoint,
+                        use_scale_shift_norm=use_scale_shift_norm,
+                    )
+                ]
+                ch = mult * model_channels
+                if ds in attention_resolutions:
+                    if num_head_channels == -1:
+                        dim_head = ch // num_heads
+                    else:
+                        num_heads = ch // num_head_channels
+                        dim_head = num_head_channels
+                    if legacy:
+                        # num_heads = 1
+                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+                    if exists(disable_self_attentions):
+                        disabled_sa = disable_self_attentions[level]
+                    else:
+                        disabled_sa = False
+
+                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
+                        layers.append(
+                            AttentionBlock(
+                                ch,
+                                use_checkpoint=use_checkpoint,
+                                num_heads=num_heads,
+                                num_head_channels=dim_head,
+                                use_new_attention_order=use_new_attention_order,
+                            ) if not use_spatial_transformer else SpatialTransformer(
+                                ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
+                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
+                                use_checkpoint=use_checkpoint
+                            )
+                        )
+                self.input_blocks.append(TimestepEmbedSequential(*layers))
+                self.zero_convs.append(self.make_zero_conv(ch))
+                self._feature_size += ch
+                input_block_chans.append(ch)
+            if level != len(channel_mult) - 1:
+                out_ch = ch
+                self.input_blocks.append(
+                    TimestepEmbedSequential(
+                        ResBlock(
+                            ch,
+                            time_embed_dim,
+                            dropout,
+                            out_channels=out_ch,
+                            dims=dims,
+                            use_checkpoint=use_checkpoint,
+                            use_scale_shift_norm=use_scale_shift_norm,
+                            down=True,
+                        )
+                        if resblock_updown
+                        else Downsample(
+                            ch, conv_resample, dims=dims, out_channels=out_ch
+                        )
+                    )
+                )
+                ch = out_ch
+                input_block_chans.append(ch)
+                self.zero_convs.append(self.make_zero_conv(ch))
+                ds *= 2
+                self._feature_size += ch
+
+        if num_head_channels == -1:
+            dim_head = ch // num_heads
+        else:
+            num_heads = ch // num_head_channels
+            dim_head = num_head_channels
+        if legacy:
+            # num_heads = 1
+            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+        self.middle_block = TimestepEmbedSequential(
+            ResBlock(
+                ch,
+                time_embed_dim,
+                dropout,
+                dims=dims,
+                use_checkpoint=use_checkpoint,
+                use_scale_shift_norm=use_scale_shift_norm,
+            ),
+            AttentionBlock(
+                ch,
+                use_checkpoint=use_checkpoint,
+                num_heads=num_heads,
+                num_head_channels=dim_head,
+                use_new_attention_order=use_new_attention_order,
+            ) if not use_spatial_transformer else SpatialTransformer(  # always uses a self-attn
+                ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
+                disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
+                use_checkpoint=use_checkpoint
+            ),
+            ResBlock(
+                ch,
+                time_embed_dim,
+                dropout,
+                dims=dims,
+                use_checkpoint=use_checkpoint,
+                use_scale_shift_norm=use_scale_shift_norm,
+            ),
+        )
+        self.middle_block_out = self.make_zero_conv(ch)
+        self._feature_size += ch
+
+    def make_zero_conv(self, channels):
+        return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
+
+    def forward(self, x, hint, text_info, timesteps, context, **kwargs):
+        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
+        if self.use_fp16:
+            t_emb = t_emb.half()
+        emb = self.time_embed(t_emb)
+
+        # guided_hint from text_info
+        B, C, H, W = x.shape
+        glyphs = torch.cat(text_info['glyphs'], dim=1).sum(dim=1, keepdim=True)
+        positions = torch.cat(text_info['positions'], dim=1).sum(dim=1, keepdim=True)
+        enc_glyph = self.glyph_block(glyphs, emb, context)
+        enc_pos = self.position_block(positions, emb, context)
+        guided_hint = self.fuse_block(torch.cat([enc_glyph, enc_pos, text_info['masked_x']], dim=1))
+
+        outs = []
+
+        h = x.type(self.dtype)
+        for module, zero_conv in zip(self.input_blocks, self.zero_convs):
+            if guided_hint is not None:
+                h = module(h, emb, context)
+                h += guided_hint
+                guided_hint = None
+            else:
+                h = module(h, emb, context)
+            outs.append(zero_conv(h, emb, context))
+
+        h = self.middle_block(h, emb, context)
+        outs.append(self.middle_block_out(h, emb, context))
+
+        return outs
+
+
+class ControlLDM(LatentDiffusion):
+
+    def __init__(self, control_stage_config, control_key, glyph_key, position_key, only_mid_control, loss_alpha=0, loss_beta=0, with_step_weight=False, use_vae_upsample=False, latin_weight=1.0, embedding_manager_config=None, *args, **kwargs):
+        self.use_fp16 = kwargs.pop('use_fp16', False)
+        super().__init__(*args, **kwargs)
+        self.control_model = instantiate_from_config(control_stage_config)
+        self.control_key = control_key
+        self.glyph_key = glyph_key
+        self.position_key = position_key
+        self.only_mid_control = only_mid_control
+        self.control_scales = [1.0] * 13
+        self.loss_alpha = loss_alpha
+        self.loss_beta = loss_beta
+        self.with_step_weight = with_step_weight
+        self.use_vae_upsample = use_vae_upsample
+        self.latin_weight = latin_weight
+
+        if embedding_manager_config is not None and embedding_manager_config.params.valid:
+            self.embedding_manager = self.instantiate_embedding_manager(embedding_manager_config, self.cond_stage_model)
+            for param in self.embedding_manager.embedding_parameters():
+                param.requires_grad = True
+        else:
+            self.embedding_manager = None
+        if self.loss_alpha > 0 or self.loss_beta > 0 or self.embedding_manager:
+            if embedding_manager_config.params.emb_type == 'ocr':
+                self.text_predictor = create_predictor().eval()
+                args = edict()
+                args.rec_image_shape = "3, 48, 320"
+                args.rec_batch_num = 6
+                args.rec_char_dict_path = str(CURRENT_DIR.parent / "ocr_recog" / "ppocr_keys_v1.txt")
+                args.use_fp16 = self.use_fp16
+                self.cn_recognizer = TextRecognizer(args, self.text_predictor)
+                for param in self.text_predictor.parameters():
+                    param.requires_grad = False
+                if self.embedding_manager:
+                    self.embedding_manager.recog = self.cn_recognizer
+
+    @torch.no_grad()
+    def get_input(self, batch, k, bs=None, *args, **kwargs):
+        if self.embedding_manager is None:  # fill in full caption
+            self.fill_caption(batch)
+        x, c, mx = super().get_input(batch, self.first_stage_key, mask_k='masked_img', *args, **kwargs)
+        control = batch[self.control_key]  # for log_images and loss_alpha, not real control
+        if bs is not None:
+            control = control[:bs]
+        control = control.to(self.device)
+        control = einops.rearrange(control, 'b h w c -> b c h w')
+        control = control.to(memory_format=torch.contiguous_format).float()
+
+        inv_mask = batch['inv_mask']
+        if bs is not None:
+            inv_mask = inv_mask[:bs]
+        inv_mask = inv_mask.to(self.device)
+        inv_mask = einops.rearrange(inv_mask, 'b h w c -> b c h w')
+        inv_mask = inv_mask.to(memory_format=torch.contiguous_format).float()
+
+        glyphs = batch[self.glyph_key]
+        gly_line = batch['gly_line']
+        positions = batch[self.position_key]
+        n_lines = batch['n_lines']
+        language = batch['language']
+        texts = batch['texts']
+        assert len(glyphs) == len(positions)
+        for i in range(len(glyphs)):
+            if bs is not None:
+                glyphs[i] = glyphs[i][:bs]
+                gly_line[i] = gly_line[i][:bs]
+                positions[i] = positions[i][:bs]
+                n_lines = n_lines[:bs]
+            glyphs[i] = glyphs[i].to(self.device)
+            gly_line[i] = gly_line[i].to(self.device)
+            positions[i] = positions[i].to(self.device)
+            glyphs[i] = einops.rearrange(glyphs[i], 'b h w c -> b c h w')
+            gly_line[i] = einops.rearrange(gly_line[i], 'b h w c -> b c h w')
+            positions[i] = einops.rearrange(positions[i], 'b h w c -> b c h w')
+            glyphs[i] = glyphs[i].to(memory_format=torch.contiguous_format).float()
+            gly_line[i] = gly_line[i].to(memory_format=torch.contiguous_format).float()
+            positions[i] = positions[i].to(memory_format=torch.contiguous_format).float()
+        info = {}
+        info['glyphs'] = glyphs
+        info['positions'] = positions
+        info['n_lines'] = n_lines
+        info['language'] = language
+        info['texts'] = texts
+        info['img'] = batch['img']  # nhwc, (-1,1)
+        info['masked_x'] = mx
+        info['gly_line'] = gly_line
+        info['inv_mask'] = inv_mask
+        return x, dict(c_crossattn=[c], c_concat=[control], text_info=info)
+
+    def apply_model(self, x_noisy, t, cond, *args, **kwargs):
+        assert isinstance(cond, dict)
+        diffusion_model = self.model.diffusion_model
+        _cond = torch.cat(cond['c_crossattn'], 1)
+        _hint = torch.cat(cond['c_concat'], 1)
+        if self.use_fp16:
+            x_noisy = x_noisy.half()
+        control = self.control_model(x=x_noisy, timesteps=t, context=_cond, hint=_hint, text_info=cond['text_info'])
+        control = [c * scale for c, scale in zip(control, self.control_scales)]
+        eps = diffusion_model(x=x_noisy, timesteps=t, context=_cond, control=control, only_mid_control=self.only_mid_control)
+
+        return eps
+
+    def instantiate_embedding_manager(self, config, embedder):
+        model = instantiate_from_config(config, embedder=embedder)
+        return model
+
+    @torch.no_grad()
+    def get_unconditional_conditioning(self, N):
+        return self.get_learned_conditioning(dict(c_crossattn=[[""] * N], text_info=None))
+
+    def get_learned_conditioning(self, c):
+        if self.cond_stage_forward is None:
+            if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
+                if self.embedding_manager is not None and c['text_info'] is not None:
+                    self.embedding_manager.encode_text(c['text_info'])
+                if isinstance(c, dict):
+                    cond_txt = c['c_crossattn'][0]
+                else:
+                    cond_txt = c
+                if self.embedding_manager is not None:
+                    cond_txt = self.cond_stage_model.encode(cond_txt, embedding_manager=self.embedding_manager)
+                else:
+                    cond_txt = self.cond_stage_model.encode(cond_txt)
+                if isinstance(c, dict):
+                    c['c_crossattn'][0] = cond_txt
+                else:
+                    c = cond_txt
+                if isinstance(c, DiagonalGaussianDistribution):
+                    c = c.mode()
+            else:
+                c = self.cond_stage_model(c)
+        else:
+            assert hasattr(self.cond_stage_model, self.cond_stage_forward)
+            c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
+        return c
+
+    def fill_caption(self, batch, place_holder='*'):
+        bs = len(batch['n_lines'])
+        cond_list = copy.deepcopy(batch[self.cond_stage_key])
+        for i in range(bs):
+            n_lines = batch['n_lines'][i]
+            if n_lines == 0:
+                continue
+            cur_cap = cond_list[i]
+            for j in range(n_lines):
+                r_txt = batch['texts'][j][i]
+                cur_cap = cur_cap.replace(place_holder, f'"{r_txt}"', 1)
+            cond_list[i] = cur_cap
+        batch[self.cond_stage_key] = cond_list
+
+    @torch.no_grad()
+    def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
+                   quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
+                   plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
+                   use_ema_scope=True,
+                   **kwargs):
+        use_ddim = ddim_steps is not None
+
+        log = dict()
+        z, c = self.get_input(batch, self.first_stage_key, bs=N)
+        if self.cond_stage_trainable:
+            with torch.no_grad():
+                c = self.get_learned_conditioning(c)
+        c_crossattn = c["c_crossattn"][0][:N]
+        c_cat = c["c_concat"][0][:N]
+        text_info = c["text_info"]
+        text_info['glyphs'] = [i[:N] for i in text_info['glyphs']]
+        text_info['gly_line'] = [i[:N] for i in text_info['gly_line']]
+        text_info['positions'] = [i[:N] for i in text_info['positions']]
+        text_info['n_lines'] = text_info['n_lines'][:N]
+        text_info['masked_x'] = text_info['masked_x'][:N]
+        text_info['img'] = text_info['img'][:N]
+
+        N = min(z.shape[0], N)
+        n_row = min(z.shape[0], n_row)
+        log["reconstruction"] = self.decode_first_stage(z)
+        log["masked_image"] = self.decode_first_stage(text_info['masked_x'])
+        log["control"] = c_cat * 2.0 - 1.0
+        log["img"] = text_info['img'].permute(0, 3, 1, 2)  # log source image if needed
+        # get glyph
+        glyph_bs = torch.stack(text_info['glyphs'])
+        glyph_bs = torch.sum(glyph_bs, dim=0) * 2.0 - 1.0
+        log["glyph"] = torch.nn.functional.interpolate(glyph_bs, size=(512, 512), mode='bilinear', align_corners=True,)
+        # fill caption
+        if not self.embedding_manager:
+            self.fill_caption(batch)
+        captions = batch[self.cond_stage_key]
+        log["conditioning"] = log_txt_as_img((512, 512), captions, size=16)
+
+        if plot_diffusion_rows:
+            # get diffusion row
+            diffusion_row = list()
+            z_start = z[:n_row]
+            for t in range(self.num_timesteps):
+                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+                    t = t.to(self.device).long()
+                    noise = torch.randn_like(z_start)
+                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+                    diffusion_row.append(self.decode_first_stage(z_noisy))
+
+            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
+            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+            log["diffusion_row"] = diffusion_grid
+
+        if sample:
+            # get denoise row
+            samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c], "text_info": text_info},
+                                                     batch_size=N, ddim=use_ddim,
+                                                     ddim_steps=ddim_steps, eta=ddim_eta)
+            x_samples = self.decode_first_stage(samples)
+            log["samples"] = x_samples
+            if plot_denoise_rows:
+                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+                log["denoise_row"] = denoise_grid
+
+        if unconditional_guidance_scale > 1.0:
+            uc_cross = self.get_unconditional_conditioning(N)
+            uc_cat = c_cat  # torch.zeros_like(c_cat)
+            uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross['c_crossattn'][0]], "text_info": text_info}
+            samples_cfg, tmps = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c_crossattn], "text_info": text_info},
+                                                batch_size=N, ddim=use_ddim,
+                                                ddim_steps=ddim_steps, eta=ddim_eta,
+                                                unconditional_guidance_scale=unconditional_guidance_scale,
+                                                unconditional_conditioning=uc_full,
+                                                )
+            x_samples_cfg = self.decode_first_stage(samples_cfg)
+            log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
+            pred_x0 = False  # wether log pred_x0
+            if pred_x0:
+                for idx in range(len(tmps['pred_x0'])):
+                    pred_x0 = self.decode_first_stage(tmps['pred_x0'][idx])
+                    log[f"pred_x0_{tmps['index'][idx]}"] = pred_x0
+
+        return log
+
+    @torch.no_grad()
+    def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
+        ddim_sampler = DDIMSampler(self)
+        b, c, h, w = cond["c_concat"][0].shape
+        shape = (self.channels, h // 8, w // 8)
+        samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, log_every_t=5, **kwargs)
+        return samples, intermediates
+
+    def configure_optimizers(self):
+        lr = self.learning_rate
+        params = list(self.control_model.parameters())
+        if self.embedding_manager:
+            params += list(self.embedding_manager.embedding_parameters())
+        if not self.sd_locked:
+            # params += list(self.model.diffusion_model.input_blocks.parameters())
+            # params += list(self.model.diffusion_model.middle_block.parameters())
+            params += list(self.model.diffusion_model.output_blocks.parameters())
+            params += list(self.model.diffusion_model.out.parameters())
+        if self.unlockKV:
+            nCount = 0
+            for name, param in self.model.diffusion_model.named_parameters():
+                if 'attn2.to_k' in name or 'attn2.to_v' in name:
+                    params += [param]
+                    nCount += 1
+            print(f'Cross attention is unlocked, and {nCount} Wk or Wv are added to potimizers!!!')
+
+        opt = torch.optim.AdamW(params, lr=lr)
+        return opt
+
+    def low_vram_shift(self, is_diffusing):
+        if is_diffusing:
+            self.model = self.model.cuda()
+            self.control_model = self.control_model.cuda()
+            self.first_stage_model = self.first_stage_model.cpu()
+            self.cond_stage_model = self.cond_stage_model.cpu()
+        else:
+            self.model = self.model.cpu()
+            self.control_model = self.control_model.cpu()
+            self.first_stage_model = self.first_stage_model.cuda()
+            self.cond_stage_model = self.cond_stage_model.cuda()
diff --git a/iopaint/model/anytext/cldm/ddim_hacked.py b/iopaint/model/anytext/cldm/ddim_hacked.py
new file mode 100644
index 0000000000000000000000000000000000000000..b23a883e7e4353dc378469de1398aac2f612045d
--- /dev/null
+++ b/iopaint/model/anytext/cldm/ddim_hacked.py
@@ -0,0 +1,486 @@
+"""SAMPLING ONLY."""
+
+import torch
+import numpy as np
+from tqdm import tqdm
+
+from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
+    make_ddim_sampling_parameters,
+    make_ddim_timesteps,
+    noise_like,
+    extract_into_tensor,
+)
+
+
+class DDIMSampler(object):
+    def __init__(self, model, device, schedule="linear", **kwargs):
+        super().__init__()
+        self.device = device
+        self.model = model
+        self.ddpm_num_timesteps = model.num_timesteps
+        self.schedule = schedule
+
+    def register_buffer(self, name, attr):
+        if type(attr) == torch.Tensor:
+            if attr.device != torch.device(self.device):
+                attr = attr.to(torch.device(self.device))
+        setattr(self, name, attr)
+
+    def make_schedule(
+        self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
+    ):
+        self.ddim_timesteps = make_ddim_timesteps(
+            ddim_discr_method=ddim_discretize,
+            num_ddim_timesteps=ddim_num_steps,
+            num_ddpm_timesteps=self.ddpm_num_timesteps,
+            verbose=verbose,
+        )
+        alphas_cumprod = self.model.alphas_cumprod
+        assert (
+            alphas_cumprod.shape[0] == self.ddpm_num_timesteps
+        ), "alphas have to be defined for each timestep"
+        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
+
+        self.register_buffer("betas", to_torch(self.model.betas))
+        self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
+        self.register_buffer(
+            "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
+        )
+
+        # calculations for diffusion q(x_t | x_{t-1}) and others
+        self.register_buffer(
+            "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
+        )
+        self.register_buffer(
+            "sqrt_one_minus_alphas_cumprod",
+            to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
+        )
+        self.register_buffer(
+            "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
+        )
+        self.register_buffer(
+            "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
+        )
+        self.register_buffer(
+            "sqrt_recipm1_alphas_cumprod",
+            to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
+        )
+
+        # ddim sampling parameters
+        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
+            alphacums=alphas_cumprod.cpu(),
+            ddim_timesteps=self.ddim_timesteps,
+            eta=ddim_eta,
+            verbose=verbose,
+        )
+        self.register_buffer("ddim_sigmas", ddim_sigmas)
+        self.register_buffer("ddim_alphas", ddim_alphas)
+        self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
+        self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
+        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+            (1 - self.alphas_cumprod_prev)
+            / (1 - self.alphas_cumprod)
+            * (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
+        )
+        self.register_buffer(
+            "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
+        )
+
+    @torch.no_grad()
+    def sample(
+        self,
+        S,
+        batch_size,
+        shape,
+        conditioning=None,
+        callback=None,
+        normals_sequence=None,
+        img_callback=None,
+        quantize_x0=False,
+        eta=0.0,
+        mask=None,
+        x0=None,
+        temperature=1.0,
+        noise_dropout=0.0,
+        score_corrector=None,
+        corrector_kwargs=None,
+        verbose=True,
+        x_T=None,
+        log_every_t=100,
+        unconditional_guidance_scale=1.0,
+        unconditional_conditioning=None,  # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+        dynamic_threshold=None,
+        ucg_schedule=None,
+        **kwargs,
+    ):
+        if conditioning is not None:
+            if isinstance(conditioning, dict):
+                ctmp = conditioning[list(conditioning.keys())[0]]
+                while isinstance(ctmp, list):
+                    ctmp = ctmp[0]
+                cbs = ctmp.shape[0]
+                if cbs != batch_size:
+                    print(
+                        f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
+                    )
+
+            elif isinstance(conditioning, list):
+                for ctmp in conditioning:
+                    if ctmp.shape[0] != batch_size:
+                        print(
+                            f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
+                        )
+
+            else:
+                if conditioning.shape[0] != batch_size:
+                    print(
+                        f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
+                    )
+
+        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+        # sampling
+        C, H, W = shape
+        size = (batch_size, C, H, W)
+        print(f"Data shape for DDIM sampling is {size}, eta {eta}")
+
+        samples, intermediates = self.ddim_sampling(
+            conditioning,
+            size,
+            callback=callback,
+            img_callback=img_callback,
+            quantize_denoised=quantize_x0,
+            mask=mask,
+            x0=x0,
+            ddim_use_original_steps=False,
+            noise_dropout=noise_dropout,
+            temperature=temperature,
+            score_corrector=score_corrector,
+            corrector_kwargs=corrector_kwargs,
+            x_T=x_T,
+            log_every_t=log_every_t,
+            unconditional_guidance_scale=unconditional_guidance_scale,
+            unconditional_conditioning=unconditional_conditioning,
+            dynamic_threshold=dynamic_threshold,
+            ucg_schedule=ucg_schedule,
+        )
+        return samples, intermediates
+
+    @torch.no_grad()
+    def ddim_sampling(
+        self,
+        cond,
+        shape,
+        x_T=None,
+        ddim_use_original_steps=False,
+        callback=None,
+        timesteps=None,
+        quantize_denoised=False,
+        mask=None,
+        x0=None,
+        img_callback=None,
+        log_every_t=100,
+        temperature=1.0,
+        noise_dropout=0.0,
+        score_corrector=None,
+        corrector_kwargs=None,
+        unconditional_guidance_scale=1.0,
+        unconditional_conditioning=None,
+        dynamic_threshold=None,
+        ucg_schedule=None,
+    ):
+        device = self.model.betas.device
+        b = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=device)
+        else:
+            img = x_T
+
+        if timesteps is None:
+            timesteps = (
+                self.ddpm_num_timesteps
+                if ddim_use_original_steps
+                else self.ddim_timesteps
+            )
+        elif timesteps is not None and not ddim_use_original_steps:
+            subset_end = (
+                int(
+                    min(timesteps / self.ddim_timesteps.shape[0], 1)
+                    * self.ddim_timesteps.shape[0]
+                )
+                - 1
+            )
+            timesteps = self.ddim_timesteps[:subset_end]
+
+        intermediates = {"x_inter": [img], "pred_x0": [img]}
+        time_range = (
+            reversed(range(0, timesteps))
+            if ddim_use_original_steps
+            else np.flip(timesteps)
+        )
+        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+        print(f"Running DDIM Sampling with {total_steps} timesteps")
+
+        iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
+
+        for i, step in enumerate(iterator):
+            index = total_steps - i - 1
+            ts = torch.full((b,), step, device=device, dtype=torch.long)
+
+            if mask is not None:
+                assert x0 is not None
+                img_orig = self.model.q_sample(
+                    x0, ts
+                )  # TODO: deterministic forward pass?
+                img = img_orig * mask + (1.0 - mask) * img
+
+            if ucg_schedule is not None:
+                assert len(ucg_schedule) == len(time_range)
+                unconditional_guidance_scale = ucg_schedule[i]
+
+            outs = self.p_sample_ddim(
+                img,
+                cond,
+                ts,
+                index=index,
+                use_original_steps=ddim_use_original_steps,
+                quantize_denoised=quantize_denoised,
+                temperature=temperature,
+                noise_dropout=noise_dropout,
+                score_corrector=score_corrector,
+                corrector_kwargs=corrector_kwargs,
+                unconditional_guidance_scale=unconditional_guidance_scale,
+                unconditional_conditioning=unconditional_conditioning,
+                dynamic_threshold=dynamic_threshold,
+            )
+            img, pred_x0 = outs
+            if callback:
+                callback(None, i, None, None)
+            if img_callback:
+                img_callback(pred_x0, i)
+
+            if index % log_every_t == 0 or index == total_steps - 1:
+                intermediates["x_inter"].append(img)
+                intermediates["pred_x0"].append(pred_x0)
+
+        return img, intermediates
+
+    @torch.no_grad()
+    def p_sample_ddim(
+        self,
+        x,
+        c,
+        t,
+        index,
+        repeat_noise=False,
+        use_original_steps=False,
+        quantize_denoised=False,
+        temperature=1.0,
+        noise_dropout=0.0,
+        score_corrector=None,
+        corrector_kwargs=None,
+        unconditional_guidance_scale=1.0,
+        unconditional_conditioning=None,
+        dynamic_threshold=None,
+    ):
+        b, *_, device = *x.shape, x.device
+
+        if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
+            model_output = self.model.apply_model(x, t, c)
+        else:
+            model_t = self.model.apply_model(x, t, c)
+            model_uncond = self.model.apply_model(x, t, unconditional_conditioning)
+            model_output = model_uncond + unconditional_guidance_scale * (
+                model_t - model_uncond
+            )
+
+        if self.model.parameterization == "v":
+            e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
+        else:
+            e_t = model_output
+
+        if score_corrector is not None:
+            assert self.model.parameterization == "eps", "not implemented"
+            e_t = score_corrector.modify_score(
+                self.model, e_t, x, t, c, **corrector_kwargs
+            )
+
+        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+        alphas_prev = (
+            self.model.alphas_cumprod_prev
+            if use_original_steps
+            else self.ddim_alphas_prev
+        )
+        sqrt_one_minus_alphas = (
+            self.model.sqrt_one_minus_alphas_cumprod
+            if use_original_steps
+            else self.ddim_sqrt_one_minus_alphas
+        )
+        sigmas = (
+            self.model.ddim_sigmas_for_original_num_steps
+            if use_original_steps
+            else self.ddim_sigmas
+        )
+        # select parameters corresponding to the currently considered timestep
+        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+        sqrt_one_minus_at = torch.full(
+            (b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
+        )
+
+        # current prediction for x_0
+        if self.model.parameterization != "v":
+            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+        else:
+            pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
+
+        if quantize_denoised:
+            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+
+        if dynamic_threshold is not None:
+            raise NotImplementedError()
+
+        # direction pointing to x_t
+        dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
+        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+        if noise_dropout > 0.0:
+            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+        return x_prev, pred_x0
+
+    @torch.no_grad()
+    def encode(
+        self,
+        x0,
+        c,
+        t_enc,
+        use_original_steps=False,
+        return_intermediates=None,
+        unconditional_guidance_scale=1.0,
+        unconditional_conditioning=None,
+        callback=None,
+    ):
+        timesteps = (
+            np.arange(self.ddpm_num_timesteps)
+            if use_original_steps
+            else self.ddim_timesteps
+        )
+        num_reference_steps = timesteps.shape[0]
+
+        assert t_enc <= num_reference_steps
+        num_steps = t_enc
+
+        if use_original_steps:
+            alphas_next = self.alphas_cumprod[:num_steps]
+            alphas = self.alphas_cumprod_prev[:num_steps]
+        else:
+            alphas_next = self.ddim_alphas[:num_steps]
+            alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
+
+        x_next = x0
+        intermediates = []
+        inter_steps = []
+        for i in tqdm(range(num_steps), desc="Encoding Image"):
+            t = torch.full(
+                (x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long
+            )
+            if unconditional_guidance_scale == 1.0:
+                noise_pred = self.model.apply_model(x_next, t, c)
+            else:
+                assert unconditional_conditioning is not None
+                e_t_uncond, noise_pred = torch.chunk(
+                    self.model.apply_model(
+                        torch.cat((x_next, x_next)),
+                        torch.cat((t, t)),
+                        torch.cat((unconditional_conditioning, c)),
+                    ),
+                    2,
+                )
+                noise_pred = e_t_uncond + unconditional_guidance_scale * (
+                    noise_pred - e_t_uncond
+                )
+
+            xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
+            weighted_noise_pred = (
+                alphas_next[i].sqrt()
+                * ((1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt())
+                * noise_pred
+            )
+            x_next = xt_weighted + weighted_noise_pred
+            if (
+                return_intermediates
+                and i % (num_steps // return_intermediates) == 0
+                and i < num_steps - 1
+            ):
+                intermediates.append(x_next)
+                inter_steps.append(i)
+            elif return_intermediates and i >= num_steps - 2:
+                intermediates.append(x_next)
+                inter_steps.append(i)
+            if callback:
+                callback(i)
+
+        out = {"x_encoded": x_next, "intermediate_steps": inter_steps}
+        if return_intermediates:
+            out.update({"intermediates": intermediates})
+        return x_next, out
+
+    @torch.no_grad()
+    def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
+        # fast, but does not allow for exact reconstruction
+        # t serves as an index to gather the correct alphas
+        if use_original_steps:
+            sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
+            sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
+        else:
+            sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
+            sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
+
+        if noise is None:
+            noise = torch.randn_like(x0)
+        return (
+            extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
+            + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
+        )
+
+    @torch.no_grad()
+    def decode(
+        self,
+        x_latent,
+        cond,
+        t_start,
+        unconditional_guidance_scale=1.0,
+        unconditional_conditioning=None,
+        use_original_steps=False,
+        callback=None,
+    ):
+        timesteps = (
+            np.arange(self.ddpm_num_timesteps)
+            if use_original_steps
+            else self.ddim_timesteps
+        )
+        timesteps = timesteps[:t_start]
+
+        time_range = np.flip(timesteps)
+        total_steps = timesteps.shape[0]
+        print(f"Running DDIM Sampling with {total_steps} timesteps")
+
+        iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
+        x_dec = x_latent
+        for i, step in enumerate(iterator):
+            index = total_steps - i - 1
+            ts = torch.full(
+                (x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
+            )
+            x_dec, _ = self.p_sample_ddim(
+                x_dec,
+                cond,
+                ts,
+                index=index,
+                use_original_steps=use_original_steps,
+                unconditional_guidance_scale=unconditional_guidance_scale,
+                unconditional_conditioning=unconditional_conditioning,
+            )
+            if callback:
+                callback(i)
+        return x_dec
diff --git a/iopaint/model/anytext/cldm/embedding_manager.py b/iopaint/model/anytext/cldm/embedding_manager.py
new file mode 100644
index 0000000000000000000000000000000000000000..6ccf8a983d75151f7c858532ffcb9eba254125ee
--- /dev/null
+++ b/iopaint/model/anytext/cldm/embedding_manager.py
@@ -0,0 +1,165 @@
+'''
+Copyright (c) Alibaba, Inc. and its affiliates.
+'''
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from functools import partial
+from iopaint.model.anytext.ldm.modules.diffusionmodules.util import conv_nd, linear
+
+
+def get_clip_token_for_string(tokenizer, string):
+    batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True,
+                               return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+    tokens = batch_encoding["input_ids"]
+    assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string"
+    return tokens[0, 1]
+
+
+def get_bert_token_for_string(tokenizer, string):
+    token = tokenizer(string)
+    assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"
+    token = token[0, 1]
+    return token
+
+
+def get_clip_vision_emb(encoder, processor, img):
+    _img = img.repeat(1, 3, 1, 1)*255
+    inputs = processor(images=_img, return_tensors="pt")
+    inputs['pixel_values'] = inputs['pixel_values'].to(img.device)
+    outputs = encoder(**inputs)
+    emb = outputs.image_embeds
+    return emb
+
+
+def get_recog_emb(encoder, img_list):
+    _img_list = [(img.repeat(1, 3, 1, 1)*255)[0] for img in img_list]
+    encoder.predictor.eval()
+    _, preds_neck = encoder.pred_imglist(_img_list, show_debug=False)
+    return preds_neck
+
+
+def pad_H(x):
+    _, _, H, W = x.shape
+    p_top = (W - H) // 2
+    p_bot = W - H - p_top
+    return F.pad(x, (0, 0, p_top, p_bot))
+
+
+class EncodeNet(nn.Module):
+    def __init__(self, in_channels, out_channels):
+        super(EncodeNet, self).__init__()
+        chan = 16
+        n_layer = 4  # downsample
+
+        self.conv1 = conv_nd(2, in_channels, chan, 3, padding=1)
+        self.conv_list = nn.ModuleList([])
+        _c = chan
+        for i in range(n_layer):
+            self.conv_list.append(conv_nd(2, _c, _c*2, 3, padding=1, stride=2))
+            _c *= 2
+        self.conv2 = conv_nd(2, _c, out_channels, 3, padding=1)
+        self.avgpool = nn.AdaptiveAvgPool2d(1)
+        self.act = nn.SiLU()
+
+    def forward(self, x):
+        x = self.act(self.conv1(x))
+        for layer in self.conv_list:
+            x = self.act(layer(x))
+        x = self.act(self.conv2(x))
+        x = self.avgpool(x)
+        x = x.view(x.size(0), -1)
+        return x
+
+
+class EmbeddingManager(nn.Module):
+    def __init__(
+            self,
+            embedder,
+            valid=True,
+            glyph_channels=20,
+            position_channels=1,
+            placeholder_string='*',
+            add_pos=False,
+            emb_type='ocr',
+            **kwargs
+    ):
+        super().__init__()
+        if hasattr(embedder, 'tokenizer'):  # using Stable Diffusion's CLIP encoder
+            get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
+            token_dim = 768
+            if hasattr(embedder, 'vit'):
+                assert emb_type == 'vit'
+                self.get_vision_emb = partial(get_clip_vision_emb, embedder.vit, embedder.processor)
+            self.get_recog_emb = None
+        else:  # using LDM's BERT encoder
+            get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn)
+            token_dim = 1280
+        self.token_dim = token_dim
+        self.emb_type = emb_type
+
+        self.add_pos = add_pos
+        if add_pos:
+            self.position_encoder = EncodeNet(position_channels, token_dim)
+        if emb_type == 'ocr':
+            self.proj = linear(40*64, token_dim)
+        if emb_type == 'conv':
+            self.glyph_encoder = EncodeNet(glyph_channels, token_dim)
+
+        self.placeholder_token = get_token_for_string(placeholder_string)
+
+    def encode_text(self, text_info):
+        if self.get_recog_emb is None and self.emb_type == 'ocr':
+            self.get_recog_emb = partial(get_recog_emb, self.recog)
+
+        gline_list = []
+        pos_list = []
+        for i in range(len(text_info['n_lines'])):  # sample index in a batch
+            n_lines = text_info['n_lines'][i]
+            for j in range(n_lines):  # line
+                gline_list += [text_info['gly_line'][j][i:i+1]]
+                if self.add_pos:
+                    pos_list += [text_info['positions'][j][i:i+1]]
+
+        if len(gline_list) > 0:
+            if self.emb_type == 'ocr':
+                recog_emb = self.get_recog_emb(gline_list)
+                enc_glyph = self.proj(recog_emb.reshape(recog_emb.shape[0], -1))
+            elif self.emb_type == 'vit':
+                enc_glyph = self.get_vision_emb(pad_H(torch.cat(gline_list, dim=0)))
+            elif self.emb_type == 'conv':
+                enc_glyph = self.glyph_encoder(pad_H(torch.cat(gline_list, dim=0)))
+            if self.add_pos:
+                enc_pos = self.position_encoder(torch.cat(gline_list, dim=0))
+                enc_glyph = enc_glyph+enc_pos
+
+        self.text_embs_all = []
+        n_idx = 0
+        for i in range(len(text_info['n_lines'])):  # sample index in a batch
+            n_lines = text_info['n_lines'][i]
+            text_embs = []
+            for j in range(n_lines):  # line
+                text_embs += [enc_glyph[n_idx:n_idx+1]]
+                n_idx += 1
+            self.text_embs_all += [text_embs]
+
+    def forward(
+            self,
+            tokenized_text,
+            embedded_text,
+    ):
+        b, device = tokenized_text.shape[0], tokenized_text.device
+        for i in range(b):
+            idx = tokenized_text[i] == self.placeholder_token.to(device)
+            if sum(idx) > 0:
+                if i >= len(self.text_embs_all):
+                    print('truncation for log images...')
+                    break
+                text_emb = torch.cat(self.text_embs_all[i], dim=0)
+                if sum(idx) != len(text_emb):
+                    print('truncation for long caption...')
+                embedded_text[i][idx] = text_emb[:sum(idx)]
+        return embedded_text
+
+    def embedding_parameters(self):
+        return self.parameters()
diff --git a/iopaint/model/anytext/cldm/hack.py b/iopaint/model/anytext/cldm/hack.py
new file mode 100644
index 0000000000000000000000000000000000000000..05afe5f2513b6191f0e7b2f33f6ff80518a215d3
--- /dev/null
+++ b/iopaint/model/anytext/cldm/hack.py
@@ -0,0 +1,111 @@
+import torch
+import einops
+
+import iopaint.model.anytext.ldm.modules.encoders.modules
+import iopaint.model.anytext.ldm.modules.attention
+
+from transformers import logging
+from iopaint.model.anytext.ldm.modules.attention import default
+
+
+def disable_verbosity():
+    logging.set_verbosity_error()
+    print('logging improved.')
+    return
+
+
+def enable_sliced_attention():
+    iopaint.model.anytext.ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward
+    print('Enabled sliced_attention.')
+    return
+
+
+def hack_everything(clip_skip=0):
+    disable_verbosity()
+    iopaint.model.anytext.ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
+    iopaint.model.anytext.ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
+    print('Enabled clip hacks.')
+    return
+
+
+# Written by Lvmin
+def _hacked_clip_forward(self, text):
+    PAD = self.tokenizer.pad_token_id
+    EOS = self.tokenizer.eos_token_id
+    BOS = self.tokenizer.bos_token_id
+
+    def tokenize(t):
+        return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
+
+    def transformer_encode(t):
+        if self.clip_skip > 1:
+            rt = self.transformer(input_ids=t, output_hidden_states=True)
+            return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
+        else:
+            return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
+
+    def split(x):
+        return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
+
+    def pad(x, p, i):
+        return x[:i] if len(x) >= i else x + [p] * (i - len(x))
+
+    raw_tokens_list = tokenize(text)
+    tokens_list = []
+
+    for raw_tokens in raw_tokens_list:
+        raw_tokens_123 = split(raw_tokens)
+        raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
+        raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
+        tokens_list.append(raw_tokens_123)
+
+    tokens_list = torch.IntTensor(tokens_list).to(self.device)
+
+    feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
+    y = transformer_encode(feed)
+    z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
+
+    return z
+
+
+# Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py
+def _hacked_sliced_attentin_forward(self, x, context=None, mask=None):
+    h = self.heads
+
+    q = self.to_q(x)
+    context = default(context, x)
+    k = self.to_k(context)
+    v = self.to_v(context)
+    del context, x
+
+    q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+
+    limit = k.shape[0]
+    att_step = 1
+    q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0))
+    k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0))
+    v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0))
+
+    q_chunks.reverse()
+    k_chunks.reverse()
+    v_chunks.reverse()
+    sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
+    del k, q, v
+    for i in range(0, limit, att_step):
+        q_buffer = q_chunks.pop()
+        k_buffer = k_chunks.pop()
+        v_buffer = v_chunks.pop()
+        sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
+
+        del k_buffer, q_buffer
+        # attention, what we cannot get enough of, by chunks
+
+        sim_buffer = sim_buffer.softmax(dim=-1)
+
+        sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
+        del v_buffer
+        sim[i:i + att_step, :, :] = sim_buffer
+
+        del sim_buffer
+    sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h)
+    return self.to_out(sim)
diff --git a/iopaint/model/anytext/cldm/model.py b/iopaint/model/anytext/cldm/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..688f2edd1d04aedf500988a46c141a489dddf5e6
--- /dev/null
+++ b/iopaint/model/anytext/cldm/model.py
@@ -0,0 +1,40 @@
+import os
+import torch
+
+from omegaconf import OmegaConf
+from iopaint.model.anytext.ldm.util import instantiate_from_config
+
+
+def get_state_dict(d):
+    return d.get("state_dict", d)
+
+
+def load_state_dict(ckpt_path, location="cpu"):
+    _, extension = os.path.splitext(ckpt_path)
+    if extension.lower() == ".safetensors":
+        import safetensors.torch
+
+        state_dict = safetensors.torch.load_file(ckpt_path, device=location)
+    else:
+        state_dict = get_state_dict(
+            torch.load(ckpt_path, map_location=torch.device(location))
+        )
+    state_dict = get_state_dict(state_dict)
+    print(f"Loaded state_dict from [{ckpt_path}]")
+    return state_dict
+
+
+def create_model(config_path, device, cond_stage_path=None, use_fp16=False):
+    config = OmegaConf.load(config_path)
+    # if cond_stage_path:
+    #     config.model.params.cond_stage_config.params.version = (
+    #         cond_stage_path  # use pre-downloaded ckpts, in case blocked
+    #     )
+    config.model.params.cond_stage_config.params.device = str(device)
+    if use_fp16:
+        config.model.params.use_fp16 = True
+        config.model.params.control_stage_config.params.use_fp16 = True
+        config.model.params.unet_config.params.use_fp16 = True
+    model = instantiate_from_config(config.model).cpu()
+    print(f"Loaded model config from [{config_path}]")
+    return model
diff --git a/iopaint/model/anytext/ldm/models/diffusion/ddim.py b/iopaint/model/anytext/ldm/models/diffusion/ddim.py
new file mode 100644
index 0000000000000000000000000000000000000000..f8bbaff872ed59066cecf478f04f28857d77a305
--- /dev/null
+++ b/iopaint/model/anytext/ldm/models/diffusion/ddim.py
@@ -0,0 +1,354 @@
+"""SAMPLING ONLY."""
+
+import torch
+import numpy as np
+from tqdm import tqdm
+
+from iopaint.model.anytext.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
+
+
+class DDIMSampler(object):
+    def __init__(self, model, schedule="linear", **kwargs):
+        super().__init__()
+        self.model = model
+        self.ddpm_num_timesteps = model.num_timesteps
+        self.schedule = schedule
+
+    def register_buffer(self, name, attr):
+        if type(attr) == torch.Tensor:
+            if attr.device != torch.device("cuda"):
+                attr = attr.to(torch.device("cuda"))
+        setattr(self, name, attr)
+
+    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
+        self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+                                                  num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
+        alphas_cumprod = self.model.alphas_cumprod
+        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+        self.register_buffer('betas', to_torch(self.model.betas))
+        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+        self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
+
+        # calculations for diffusion q(x_t | x_{t-1}) and others
+        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+        # ddim sampling parameters
+        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+                                                                                   ddim_timesteps=self.ddim_timesteps,
+                                                                                   eta=ddim_eta,verbose=verbose)
+        self.register_buffer('ddim_sigmas', ddim_sigmas)
+        self.register_buffer('ddim_alphas', ddim_alphas)
+        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+        self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+                        1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+        self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+    @torch.no_grad()
+    def sample(self,
+               S,
+               batch_size,
+               shape,
+               conditioning=None,
+               callback=None,
+               normals_sequence=None,
+               img_callback=None,
+               quantize_x0=False,
+               eta=0.,
+               mask=None,
+               x0=None,
+               temperature=1.,
+               noise_dropout=0.,
+               score_corrector=None,
+               corrector_kwargs=None,
+               verbose=True,
+               x_T=None,
+               log_every_t=100,
+               unconditional_guidance_scale=1.,
+               unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+               dynamic_threshold=None,
+               ucg_schedule=None,
+               **kwargs
+               ):
+        if conditioning is not None:
+            if isinstance(conditioning, dict):
+                ctmp = conditioning[list(conditioning.keys())[0]]
+                while isinstance(ctmp, list): ctmp = ctmp[0]
+                cbs = ctmp.shape[0]
+                # cbs = len(ctmp[0])
+                if cbs != batch_size:
+                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+
+            elif isinstance(conditioning, list):
+                for ctmp in conditioning:
+                    if ctmp.shape[0] != batch_size:
+                        print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+
+            else:
+                if conditioning.shape[0] != batch_size:
+                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+        # sampling
+        C, H, W = shape
+        size = (batch_size, C, H, W)
+        print(f'Data shape for DDIM sampling is {size}, eta {eta}')
+
+        samples, intermediates = self.ddim_sampling(conditioning, size,
+                                                    callback=callback,
+                                                    img_callback=img_callback,
+                                                    quantize_denoised=quantize_x0,
+                                                    mask=mask, x0=x0,
+                                                    ddim_use_original_steps=False,
+                                                    noise_dropout=noise_dropout,
+                                                    temperature=temperature,
+                                                    score_corrector=score_corrector,
+                                                    corrector_kwargs=corrector_kwargs,
+                                                    x_T=x_T,
+                                                    log_every_t=log_every_t,
+                                                    unconditional_guidance_scale=unconditional_guidance_scale,
+                                                    unconditional_conditioning=unconditional_conditioning,
+                                                    dynamic_threshold=dynamic_threshold,
+                                                    ucg_schedule=ucg_schedule
+                                                    )
+        return samples, intermediates
+
+    @torch.no_grad()
+    def ddim_sampling(self, cond, shape,
+                      x_T=None, ddim_use_original_steps=False,
+                      callback=None, timesteps=None, quantize_denoised=False,
+                      mask=None, x0=None, img_callback=None, log_every_t=100,
+                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+                      unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
+                      ucg_schedule=None):
+        device = self.model.betas.device
+        b = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=device)
+        else:
+            img = x_T
+
+        if timesteps is None:
+            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+        elif timesteps is not None and not ddim_use_original_steps:
+            subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
+            timesteps = self.ddim_timesteps[:subset_end]
+
+        intermediates = {'x_inter': [img], 'pred_x0': [img], "index": [10000]}
+        time_range = reversed(range(0, timesteps)) if ddim_use_original_steps else np.flip(timesteps)
+        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+        print(f"Running DDIM Sampling with {total_steps} timesteps")
+
+        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
+
+        for i, step in enumerate(iterator):
+            index = total_steps - i - 1
+            ts = torch.full((b,), step, device=device, dtype=torch.long)
+
+            if mask is not None:
+                assert x0 is not None
+                img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
+                img = img_orig * mask + (1. - mask) * img
+
+            if ucg_schedule is not None:
+                assert len(ucg_schedule) == len(time_range)
+                unconditional_guidance_scale = ucg_schedule[i]
+
+            outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
+                                      quantize_denoised=quantize_denoised, temperature=temperature,
+                                      noise_dropout=noise_dropout, score_corrector=score_corrector,
+                                      corrector_kwargs=corrector_kwargs,
+                                      unconditional_guidance_scale=unconditional_guidance_scale,
+                                      unconditional_conditioning=unconditional_conditioning,
+                                      dynamic_threshold=dynamic_threshold)
+            img, pred_x0 = outs
+            if callback:
+                callback(i)
+            if img_callback:
+                img_callback(pred_x0, i)
+
+            if index % log_every_t == 0 or index == total_steps - 1:
+                intermediates['x_inter'].append(img)
+                intermediates['pred_x0'].append(pred_x0)
+                intermediates['index'].append(index)
+
+        return img, intermediates
+
+    @torch.no_grad()
+    def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+                      unconditional_guidance_scale=1., unconditional_conditioning=None,
+                      dynamic_threshold=None):
+        b, *_, device = *x.shape, x.device
+
+        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+            model_output = self.model.apply_model(x, t, c)
+        else:
+            x_in = torch.cat([x] * 2)
+            t_in = torch.cat([t] * 2)
+            if isinstance(c, dict):
+                assert isinstance(unconditional_conditioning, dict)
+                c_in = dict()
+                for k in c:
+                    if isinstance(c[k], list):
+                        c_in[k] = [torch.cat([
+                            unconditional_conditioning[k][i],
+                            c[k][i]]) for i in range(len(c[k]))]
+                    elif isinstance(c[k], dict):
+                        c_in[k] = dict()
+                        for key in c[k]:
+                            if isinstance(c[k][key], list):
+                                if not isinstance(c[k][key][0], torch.Tensor):
+                                    continue
+                                c_in[k][key] = [torch.cat([
+                                    unconditional_conditioning[k][key][i],
+                                    c[k][key][i]]) for i in range(len(c[k][key]))]
+                            else:
+                                c_in[k][key] = torch.cat([
+                                    unconditional_conditioning[k][key],
+                                    c[k][key]])
+
+                    else:
+                        c_in[k] = torch.cat([
+                                unconditional_conditioning[k],
+                                c[k]])
+            elif isinstance(c, list):
+                c_in = list()
+                assert isinstance(unconditional_conditioning, list)
+                for i in range(len(c)):
+                    c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
+            else:
+                c_in = torch.cat([unconditional_conditioning, c])
+            model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+            model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
+
+        if self.model.parameterization == "v":
+            e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
+        else:
+            e_t = model_output
+
+        if score_corrector is not None:
+            assert self.model.parameterization == "eps", 'not implemented'
+            e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+        # select parameters corresponding to the currently considered timestep
+        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+        sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
+
+        # current prediction for x_0
+        if self.model.parameterization != "v":
+            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+        else:
+            pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
+
+        if quantize_denoised:
+            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+
+        if dynamic_threshold is not None:
+            raise NotImplementedError()
+
+        # direction pointing to x_t
+        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+        if noise_dropout > 0.:
+            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+        return x_prev, pred_x0
+
+    @torch.no_grad()
+    def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
+               unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
+        num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
+
+        assert t_enc <= num_reference_steps
+        num_steps = t_enc
+
+        if use_original_steps:
+            alphas_next = self.alphas_cumprod[:num_steps]
+            alphas = self.alphas_cumprod_prev[:num_steps]
+        else:
+            alphas_next = self.ddim_alphas[:num_steps]
+            alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
+
+        x_next = x0
+        intermediates = []
+        inter_steps = []
+        for i in tqdm(range(num_steps), desc='Encoding Image'):
+            t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
+            if unconditional_guidance_scale == 1.:
+                noise_pred = self.model.apply_model(x_next, t, c)
+            else:
+                assert unconditional_conditioning is not None
+                e_t_uncond, noise_pred = torch.chunk(
+                    self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
+                                           torch.cat((unconditional_conditioning, c))), 2)
+                noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
+
+            xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
+            weighted_noise_pred = alphas_next[i].sqrt() * (
+                    (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
+            x_next = xt_weighted + weighted_noise_pred
+            if return_intermediates and i % (
+                    num_steps // return_intermediates) == 0 and i < num_steps - 1:
+                intermediates.append(x_next)
+                inter_steps.append(i)
+            elif return_intermediates and i >= num_steps - 2:
+                intermediates.append(x_next)
+                inter_steps.append(i)
+            if callback: callback(i)
+
+        out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
+        if return_intermediates:
+            out.update({'intermediates': intermediates})
+        return x_next, out
+
+    @torch.no_grad()
+    def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
+        # fast, but does not allow for exact reconstruction
+        # t serves as an index to gather the correct alphas
+        if use_original_steps:
+            sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
+            sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
+        else:
+            sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
+            sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
+
+        if noise is None:
+            noise = torch.randn_like(x0)
+        return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
+                extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
+
+    @torch.no_grad()
+    def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
+               use_original_steps=False, callback=None):
+
+        timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
+        timesteps = timesteps[:t_start]
+
+        time_range = np.flip(timesteps)
+        total_steps = timesteps.shape[0]
+        print(f"Running DDIM Sampling with {total_steps} timesteps")
+
+        iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
+        x_dec = x_latent
+        for i, step in enumerate(iterator):
+            index = total_steps - i - 1
+            ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
+            x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
+                                          unconditional_guidance_scale=unconditional_guidance_scale,
+                                          unconditional_conditioning=unconditional_conditioning)
+            if callback: callback(i)
+        return x_dec
\ No newline at end of file
diff --git a/iopaint/model/anytext/ldm/models/diffusion/ddpm.py b/iopaint/model/anytext/ldm/models/diffusion/ddpm.py
new file mode 100644
index 0000000000000000000000000000000000000000..9f489180e99f8350aa8ca31228a17598422c89be
--- /dev/null
+++ b/iopaint/model/anytext/ldm/models/diffusion/ddpm.py
@@ -0,0 +1,2380 @@
+"""
+Part of the implementation is borrowed and modified from ControlNet, publicly available at https://github.com/lllyasviel/ControlNet/blob/main/ldm/models/diffusion/ddpm.py
+"""
+
+import torch
+import torch.nn as nn
+import numpy as np
+from torch.optim.lr_scheduler import LambdaLR
+from einops import rearrange, repeat
+from contextlib import contextmanager, nullcontext
+from functools import partial
+import itertools
+from tqdm import tqdm
+from torchvision.utils import make_grid
+from omegaconf import ListConfig
+
+from iopaint.model.anytext.ldm.util import (
+    log_txt_as_img,
+    exists,
+    default,
+    ismap,
+    isimage,
+    mean_flat,
+    count_params,
+    instantiate_from_config,
+)
+from iopaint.model.anytext.ldm.modules.ema import LitEma
+from iopaint.model.anytext.ldm.modules.distributions.distributions import (
+    normal_kl,
+    DiagonalGaussianDistribution,
+)
+from iopaint.model.anytext.ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
+from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
+    make_beta_schedule,
+    extract_into_tensor,
+    noise_like,
+)
+from iopaint.model.anytext.ldm.models.diffusion.ddim import DDIMSampler
+import cv2
+
+
+__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"}
+
+PRINT_DEBUG = False
+
+
+def print_grad(grad):
+    # print('Gradient:', grad)
+    # print(grad.shape)
+    a = grad.max()
+    b = grad.min()
+    # print(f'mean={grad.mean():.4f}, max={a:.4f}, min={b:.4f}')
+    s = 255.0 / (a - b)
+    c = 255 * (-b / (a - b))
+    grad = grad * s + c
+    # print(f'mean={grad.mean():.4f}, max={grad.max():.4f}, min={grad.min():.4f}')
+    img = grad[0].permute(1, 2, 0).detach().cpu().numpy()
+    if img.shape[0] == 512:
+        cv2.imwrite("grad-img.jpg", img)
+    elif img.shape[0] == 64:
+        cv2.imwrite("grad-latent.jpg", img)
+
+
+def disabled_train(self, mode=True):
+    """Overwrite model.train with this function to make sure train/eval mode
+    does not change anymore."""
+    return self
+
+
+def uniform_on_device(r1, r2, shape, device):
+    return (r1 - r2) * torch.rand(*shape, device=device) + r2
+
+
+class DDPM(torch.nn.Module):
+    # classic DDPM with Gaussian diffusion, in image space
+    def __init__(
+        self,
+        unet_config,
+        timesteps=1000,
+        beta_schedule="linear",
+        loss_type="l2",
+        ckpt_path=None,
+        ignore_keys=[],
+        load_only_unet=False,
+        monitor="val/loss",
+        use_ema=True,
+        first_stage_key="image",
+        image_size=256,
+        channels=3,
+        log_every_t=100,
+        clip_denoised=True,
+        linear_start=1e-4,
+        linear_end=2e-2,
+        cosine_s=8e-3,
+        given_betas=None,
+        original_elbo_weight=0.0,
+        v_posterior=0.0,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
+        l_simple_weight=1.0,
+        conditioning_key=None,
+        parameterization="eps",  # all assuming fixed variance schedules
+        scheduler_config=None,
+        use_positional_encodings=False,
+        learn_logvar=False,
+        logvar_init=0.0,
+        make_it_fit=False,
+        ucg_training=None,
+        reset_ema=False,
+        reset_num_ema_updates=False,
+    ):
+        super().__init__()
+        assert parameterization in [
+            "eps",
+            "x0",
+            "v",
+        ], 'currently only supporting "eps" and "x0" and "v"'
+        self.parameterization = parameterization
+        print(
+            f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode"
+        )
+        self.cond_stage_model = None
+        self.clip_denoised = clip_denoised
+        self.log_every_t = log_every_t
+        self.first_stage_key = first_stage_key
+        self.image_size = image_size  # try conv?
+        self.channels = channels
+        self.use_positional_encodings = use_positional_encodings
+        self.model = DiffusionWrapper(unet_config, conditioning_key)
+        count_params(self.model, verbose=True)
+        self.use_ema = use_ema
+        if self.use_ema:
+            self.model_ema = LitEma(self.model)
+            print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+        self.use_scheduler = scheduler_config is not None
+        if self.use_scheduler:
+            self.scheduler_config = scheduler_config
+
+        self.v_posterior = v_posterior
+        self.original_elbo_weight = original_elbo_weight
+        self.l_simple_weight = l_simple_weight
+
+        if monitor is not None:
+            self.monitor = monitor
+        self.make_it_fit = make_it_fit
+        if reset_ema:
+            assert exists(ckpt_path)
+        if ckpt_path is not None:
+            self.init_from_ckpt(
+                ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet
+            )
+            if reset_ema:
+                assert self.use_ema
+                print(
+                    f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint."
+                )
+                self.model_ema = LitEma(self.model)
+        if reset_num_ema_updates:
+            print(
+                " +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ "
+            )
+            assert self.use_ema
+            self.model_ema.reset_num_updates()
+
+        self.register_schedule(
+            given_betas=given_betas,
+            beta_schedule=beta_schedule,
+            timesteps=timesteps,
+            linear_start=linear_start,
+            linear_end=linear_end,
+            cosine_s=cosine_s,
+        )
+
+        self.loss_type = loss_type
+
+        self.learn_logvar = learn_logvar
+        logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
+        if self.learn_logvar:
+            self.logvar = nn.Parameter(self.logvar, requires_grad=True)
+        else:
+            self.register_buffer("logvar", logvar)
+
+        self.ucg_training = ucg_training or dict()
+        if self.ucg_training:
+            self.ucg_prng = np.random.RandomState()
+
+    def register_schedule(
+        self,
+        given_betas=None,
+        beta_schedule="linear",
+        timesteps=1000,
+        linear_start=1e-4,
+        linear_end=2e-2,
+        cosine_s=8e-3,
+    ):
+        if exists(given_betas):
+            betas = given_betas
+        else:
+            betas = make_beta_schedule(
+                beta_schedule,
+                timesteps,
+                linear_start=linear_start,
+                linear_end=linear_end,
+                cosine_s=cosine_s,
+            )
+        alphas = 1.0 - betas
+        alphas_cumprod = np.cumprod(alphas, axis=0)
+        # np.save('1.npy', alphas_cumprod)
+        alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
+
+        (timesteps,) = betas.shape
+        self.num_timesteps = int(timesteps)
+        self.linear_start = linear_start
+        self.linear_end = linear_end
+        assert (
+            alphas_cumprod.shape[0] == self.num_timesteps
+        ), "alphas have to be defined for each timestep"
+
+        to_torch = partial(torch.tensor, dtype=torch.float32)
+
+        self.register_buffer("betas", to_torch(betas))
+        self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
+        self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
+
+        # calculations for diffusion q(x_t | x_{t-1}) and others
+        self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
+        self.register_buffer(
+            "sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
+        )
+        self.register_buffer(
+            "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
+        )
+        self.register_buffer(
+            "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
+        )
+        self.register_buffer(
+            "sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
+        )
+
+        # calculations for posterior q(x_{t-1} | x_t, x_0)
+        posterior_variance = (1 - self.v_posterior) * betas * (
+            1.0 - alphas_cumprod_prev
+        ) / (1.0 - alphas_cumprod) + self.v_posterior * betas
+        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+        self.register_buffer("posterior_variance", to_torch(posterior_variance))
+        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+        self.register_buffer(
+            "posterior_log_variance_clipped",
+            to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
+        )
+        self.register_buffer(
+            "posterior_mean_coef1",
+            to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
+        )
+        self.register_buffer(
+            "posterior_mean_coef2",
+            to_torch(
+                (1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
+            ),
+        )
+
+        if self.parameterization == "eps":
+            lvlb_weights = self.betas**2 / (
+                2
+                * self.posterior_variance
+                * to_torch(alphas)
+                * (1 - self.alphas_cumprod)
+            )
+        elif self.parameterization == "x0":
+            lvlb_weights = (
+                0.5
+                * np.sqrt(torch.Tensor(alphas_cumprod))
+                / (2.0 * 1 - torch.Tensor(alphas_cumprod))
+            )
+        elif self.parameterization == "v":
+            lvlb_weights = torch.ones_like(
+                self.betas**2
+                / (
+                    2
+                    * self.posterior_variance
+                    * to_torch(alphas)
+                    * (1 - self.alphas_cumprod)
+                )
+            )
+        else:
+            raise NotImplementedError("mu not supported")
+        lvlb_weights[0] = lvlb_weights[1]
+        self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
+        assert not torch.isnan(self.lvlb_weights).all()
+
+    @contextmanager
+    def ema_scope(self, context=None):
+        if self.use_ema:
+            self.model_ema.store(self.model.parameters())
+            self.model_ema.copy_to(self.model)
+            if context is not None:
+                print(f"{context}: Switched to EMA weights")
+        try:
+            yield None
+        finally:
+            if self.use_ema:
+                self.model_ema.restore(self.model.parameters())
+                if context is not None:
+                    print(f"{context}: Restored training weights")
+
+    @torch.no_grad()
+    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+        sd = torch.load(path, map_location="cpu")
+        if "state_dict" in list(sd.keys()):
+            sd = sd["state_dict"]
+        keys = list(sd.keys())
+        for k in keys:
+            for ik in ignore_keys:
+                if k.startswith(ik):
+                    print("Deleting key {} from state_dict.".format(k))
+                    del sd[k]
+        if self.make_it_fit:
+            n_params = len(
+                [
+                    name
+                    for name, _ in itertools.chain(
+                        self.named_parameters(), self.named_buffers()
+                    )
+                ]
+            )
+            for name, param in tqdm(
+                itertools.chain(self.named_parameters(), self.named_buffers()),
+                desc="Fitting old weights to new weights",
+                total=n_params,
+            ):
+                if not name in sd:
+                    continue
+                old_shape = sd[name].shape
+                new_shape = param.shape
+                assert len(old_shape) == len(new_shape)
+                if len(new_shape) > 2:
+                    # we only modify first two axes
+                    assert new_shape[2:] == old_shape[2:]
+                # assumes first axis corresponds to output dim
+                if not new_shape == old_shape:
+                    new_param = param.clone()
+                    old_param = sd[name]
+                    if len(new_shape) == 1:
+                        for i in range(new_param.shape[0]):
+                            new_param[i] = old_param[i % old_shape[0]]
+                    elif len(new_shape) >= 2:
+                        for i in range(new_param.shape[0]):
+                            for j in range(new_param.shape[1]):
+                                new_param[i, j] = old_param[
+                                    i % old_shape[0], j % old_shape[1]
+                                ]
+
+                        n_used_old = torch.ones(old_shape[1])
+                        for j in range(new_param.shape[1]):
+                            n_used_old[j % old_shape[1]] += 1
+                        n_used_new = torch.zeros(new_shape[1])
+                        for j in range(new_param.shape[1]):
+                            n_used_new[j] = n_used_old[j % old_shape[1]]
+
+                        n_used_new = n_used_new[None, :]
+                        while len(n_used_new.shape) < len(new_shape):
+                            n_used_new = n_used_new.unsqueeze(-1)
+                        new_param /= n_used_new
+
+                    sd[name] = new_param
+
+        missing, unexpected = (
+            self.load_state_dict(sd, strict=False)
+            if not only_model
+            else self.model.load_state_dict(sd, strict=False)
+        )
+        print(
+            f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
+        )
+        if len(missing) > 0:
+            print(f"Missing Keys:\n {missing}")
+        if len(unexpected) > 0:
+            print(f"\nUnexpected Keys:\n {unexpected}")
+
+    def q_mean_variance(self, x_start, t):
+        """
+        Get the distribution q(x_t | x_0).
+        :param x_start: the [N x C x ...] tensor of noiseless inputs.
+        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+        :return: A tuple (mean, variance, log_variance), all of x_start's shape.
+        """
+        mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+        variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
+        log_variance = extract_into_tensor(
+            self.log_one_minus_alphas_cumprod, t, x_start.shape
+        )
+        return mean, variance, log_variance
+
+    def predict_start_from_noise(self, x_t, t, noise):
+        return (
+            extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
+            - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
+            * noise
+        )
+
+    def predict_start_from_z_and_v(self, x_t, t, v):
+        # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+        # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+        return (
+            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t
+            - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
+        )
+
+    def predict_eps_from_z_and_v(self, x_t, t, v):
+        return (
+            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v
+            + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape)
+            * x_t
+        )
+
+    def q_posterior(self, x_start, x_t, t):
+        posterior_mean = (
+            extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
+            + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
+        )
+        posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
+        posterior_log_variance_clipped = extract_into_tensor(
+            self.posterior_log_variance_clipped, t, x_t.shape
+        )
+        return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+    def p_mean_variance(self, x, t, clip_denoised: bool):
+        model_out = self.model(x, t)
+        if self.parameterization == "eps":
+            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+        elif self.parameterization == "x0":
+            x_recon = model_out
+        if clip_denoised:
+            x_recon.clamp_(-1.0, 1.0)
+
+        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
+            x_start=x_recon, x_t=x, t=t
+        )
+        return model_mean, posterior_variance, posterior_log_variance
+
+    @torch.no_grad()
+    def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
+        b, *_, device = *x.shape, x.device
+        model_mean, _, model_log_variance = self.p_mean_variance(
+            x=x, t=t, clip_denoised=clip_denoised
+        )
+        noise = noise_like(x.shape, device, repeat_noise)
+        # no noise when t == 0
+        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+    @torch.no_grad()
+    def p_sample_loop(self, shape, return_intermediates=False):
+        device = self.betas.device
+        b = shape[0]
+        img = torch.randn(shape, device=device)
+        intermediates = [img]
+        for i in tqdm(
+            reversed(range(0, self.num_timesteps)),
+            desc="Sampling t",
+            total=self.num_timesteps,
+        ):
+            img = self.p_sample(
+                img,
+                torch.full((b,), i, device=device, dtype=torch.long),
+                clip_denoised=self.clip_denoised,
+            )
+            if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
+                intermediates.append(img)
+        if return_intermediates:
+            return img, intermediates
+        return img
+
+    @torch.no_grad()
+    def sample(self, batch_size=16, return_intermediates=False):
+        image_size = self.image_size
+        channels = self.channels
+        return self.p_sample_loop(
+            (batch_size, channels, image_size, image_size),
+            return_intermediates=return_intermediates,
+        )
+
+    def q_sample(self, x_start, t, noise=None):
+        noise = default(noise, lambda: torch.randn_like(x_start))
+        return (
+            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+            + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
+            * noise
+        )
+
+    def get_v(self, x, noise, t):
+        return (
+            extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise
+            - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
+        )
+
+    def get_loss(self, pred, target, mean=True):
+        if self.loss_type == "l1":
+            loss = (target - pred).abs()
+            if mean:
+                loss = loss.mean()
+        elif self.loss_type == "l2":
+            if mean:
+                loss = torch.nn.functional.mse_loss(target, pred)
+            else:
+                loss = torch.nn.functional.mse_loss(target, pred, reduction="none")
+        else:
+            raise NotImplementedError("unknown loss type '{loss_type}'")
+
+        return loss
+
+    def p_losses(self, x_start, t, noise=None):
+        noise = default(noise, lambda: torch.randn_like(x_start))
+        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+        model_out = self.model(x_noisy, t)
+
+        loss_dict = {}
+        if self.parameterization == "eps":
+            target = noise
+        elif self.parameterization == "x0":
+            target = x_start
+        elif self.parameterization == "v":
+            target = self.get_v(x_start, noise, t)
+        else:
+            raise NotImplementedError(
+                f"Parameterization {self.parameterization} not yet supported"
+            )
+
+        loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
+
+        log_prefix = "train" if self.training else "val"
+
+        loss_dict.update({f"{log_prefix}/loss_simple": loss.mean()})
+        loss_simple = loss.mean() * self.l_simple_weight
+
+        loss_vlb = (self.lvlb_weights[t] * loss).mean()
+        loss_dict.update({f"{log_prefix}/loss_vlb": loss_vlb})
+
+        loss = loss_simple + self.original_elbo_weight * loss_vlb
+
+        loss_dict.update({f"{log_prefix}/loss": loss})
+
+        return loss, loss_dict
+
+    def forward(self, x, *args, **kwargs):
+        # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
+        # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
+        t = torch.randint(
+            0, self.num_timesteps, (x.shape[0],), device=self.device
+        ).long()
+        return self.p_losses(x, t, *args, **kwargs)
+
+    def get_input(self, batch, k):
+        x = batch[k]
+        if len(x.shape) == 3:
+            x = x[..., None]
+        x = rearrange(x, "b h w c -> b c h w")
+        x = x.to(memory_format=torch.contiguous_format).float()
+        return x
+
+    def shared_step(self, batch):
+        x = self.get_input(batch, self.first_stage_key)
+        loss, loss_dict = self(x)
+        return loss, loss_dict
+
+    def training_step(self, batch, batch_idx):
+        for k in self.ucg_training:
+            p = self.ucg_training[k]["p"]
+            val = self.ucg_training[k]["val"]
+            if val is None:
+                val = ""
+            for i in range(len(batch[k])):
+                if self.ucg_prng.choice(2, p=[1 - p, p]):
+                    batch[k][i] = val
+
+        loss, loss_dict = self.shared_step(batch)
+
+        self.log_dict(
+            loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True
+        )
+
+        self.log(
+            "global_step",
+            self.global_step,
+            prog_bar=True,
+            logger=True,
+            on_step=True,
+            on_epoch=False,
+        )
+
+        if self.use_scheduler:
+            lr = self.optimizers().param_groups[0]["lr"]
+            self.log(
+                "lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False
+            )
+
+        return loss
+
+    @torch.no_grad()
+    def validation_step(self, batch, batch_idx):
+        _, loss_dict_no_ema = self.shared_step(batch)
+        with self.ema_scope():
+            _, loss_dict_ema = self.shared_step(batch)
+            loss_dict_ema = {key + "_ema": loss_dict_ema[key] for key in loss_dict_ema}
+        self.log_dict(
+            loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True
+        )
+        self.log_dict(
+            loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True
+        )
+
+    def on_train_batch_end(self, *args, **kwargs):
+        if self.use_ema:
+            self.model_ema(self.model)
+
+    def _get_rows_from_list(self, samples):
+        n_imgs_per_row = len(samples)
+        denoise_grid = rearrange(samples, "n b c h w -> b n c h w")
+        denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w")
+        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+        return denoise_grid
+
+    @torch.no_grad()
+    def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
+        log = dict()
+        x = self.get_input(batch, self.first_stage_key)
+        N = min(x.shape[0], N)
+        n_row = min(x.shape[0], n_row)
+        x = x.to(self.device)[:N]
+        log["inputs"] = x
+
+        # get diffusion row
+        diffusion_row = list()
+        x_start = x[:n_row]
+
+        for t in range(self.num_timesteps):
+            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+                t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
+                t = t.to(self.device).long()
+                noise = torch.randn_like(x_start)
+                x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+                diffusion_row.append(x_noisy)
+
+        log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
+
+        if sample:
+            # get denoise row
+            with self.ema_scope("Plotting"):
+                samples, denoise_row = self.sample(
+                    batch_size=N, return_intermediates=True
+                )
+
+            log["samples"] = samples
+            log["denoise_row"] = self._get_rows_from_list(denoise_row)
+
+        if return_keys:
+            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+                return log
+            else:
+                return {key: log[key] for key in return_keys}
+        return log
+
+    def configure_optimizers(self):
+        lr = self.learning_rate
+        params = list(self.model.parameters())
+        if self.learn_logvar:
+            params = params + [self.logvar]
+        opt = torch.optim.AdamW(params, lr=lr)
+        return opt
+
+
+class LatentDiffusion(DDPM):
+    """main class"""
+
+    def __init__(
+        self,
+        first_stage_config,
+        cond_stage_config,
+        num_timesteps_cond=None,
+        cond_stage_key="image",
+        cond_stage_trainable=False,
+        concat_mode=True,
+        cond_stage_forward=None,
+        conditioning_key=None,
+        scale_factor=1.0,
+        scale_by_std=False,
+        force_null_conditioning=False,
+        *args,
+        **kwargs,
+    ):
+        self.force_null_conditioning = force_null_conditioning
+        self.num_timesteps_cond = default(num_timesteps_cond, 1)
+        self.scale_by_std = scale_by_std
+        assert self.num_timesteps_cond <= kwargs["timesteps"]
+        # for backwards compatibility after implementation of DiffusionWrapper
+        if conditioning_key is None:
+            conditioning_key = "concat" if concat_mode else "crossattn"
+        if (
+            cond_stage_config == "__is_unconditional__"
+            and not self.force_null_conditioning
+        ):
+            conditioning_key = None
+        ckpt_path = kwargs.pop("ckpt_path", None)
+        reset_ema = kwargs.pop("reset_ema", False)
+        reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
+        ignore_keys = kwargs.pop("ignore_keys", [])
+        super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
+        self.concat_mode = concat_mode
+        self.cond_stage_trainable = cond_stage_trainable
+        self.cond_stage_key = cond_stage_key
+        try:
+            self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
+        except:
+            self.num_downs = 0
+        if not scale_by_std:
+            self.scale_factor = scale_factor
+        else:
+            self.register_buffer("scale_factor", torch.tensor(scale_factor))
+        self.instantiate_first_stage(first_stage_config)
+        self.instantiate_cond_stage(cond_stage_config)
+        self.cond_stage_forward = cond_stage_forward
+        self.clip_denoised = False
+        self.bbox_tokenizer = None
+
+        self.restarted_from_ckpt = False
+        if ckpt_path is not None:
+            self.init_from_ckpt(ckpt_path, ignore_keys)
+            self.restarted_from_ckpt = True
+            if reset_ema:
+                assert self.use_ema
+                print(
+                    f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint."
+                )
+                self.model_ema = LitEma(self.model)
+        if reset_num_ema_updates:
+            print(
+                " +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ "
+            )
+            assert self.use_ema
+            self.model_ema.reset_num_updates()
+
+    def make_cond_schedule(
+        self,
+    ):
+        self.cond_ids = torch.full(
+            size=(self.num_timesteps,),
+            fill_value=self.num_timesteps - 1,
+            dtype=torch.long,
+        )
+        ids = torch.round(
+            torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
+        ).long()
+        self.cond_ids[: self.num_timesteps_cond] = ids
+
+    @torch.no_grad()
+    def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
+        # only for very first batch
+        if (
+            self.scale_by_std
+            and self.current_epoch == 0
+            and self.global_step == 0
+            and batch_idx == 0
+            and not self.restarted_from_ckpt
+        ):
+            assert (
+                self.scale_factor == 1.0
+            ), "rather not use custom rescaling and std-rescaling simultaneously"
+            # set rescale weight to 1./std of encodings
+            print("### USING STD-RESCALING ###")
+            x = super().get_input(batch, self.first_stage_key)
+            x = x.to(self.device)
+            encoder_posterior = self.encode_first_stage(x)
+            z = self.get_first_stage_encoding(encoder_posterior).detach()
+            del self.scale_factor
+            self.register_buffer("scale_factor", 1.0 / z.flatten().std())
+            print(f"setting self.scale_factor to {self.scale_factor}")
+            print("### USING STD-RESCALING ###")
+
+    def register_schedule(
+        self,
+        given_betas=None,
+        beta_schedule="linear",
+        timesteps=1000,
+        linear_start=1e-4,
+        linear_end=2e-2,
+        cosine_s=8e-3,
+    ):
+        super().register_schedule(
+            given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
+        )
+
+        self.shorten_cond_schedule = self.num_timesteps_cond > 1
+        if self.shorten_cond_schedule:
+            self.make_cond_schedule()
+
+    def instantiate_first_stage(self, config):
+        model = instantiate_from_config(config)
+        self.first_stage_model = model.eval()
+        self.first_stage_model.train = disabled_train
+        for param in self.first_stage_model.parameters():
+            param.requires_grad = False
+
+    def instantiate_cond_stage(self, config):
+        if not self.cond_stage_trainable:
+            if config == "__is_first_stage__":
+                print("Using first stage also as cond stage.")
+                self.cond_stage_model = self.first_stage_model
+            elif config == "__is_unconditional__":
+                print(f"Training {self.__class__.__name__} as an unconditional model.")
+                self.cond_stage_model = None
+                # self.be_unconditional = True
+            else:
+                model = instantiate_from_config(config)
+                self.cond_stage_model = model.eval()
+                self.cond_stage_model.train = disabled_train
+                for param in self.cond_stage_model.parameters():
+                    param.requires_grad = False
+        else:
+            assert config != "__is_first_stage__"
+            assert config != "__is_unconditional__"
+            model = instantiate_from_config(config)
+            self.cond_stage_model = model
+
+    def _get_denoise_row_from_list(
+        self, samples, desc="", force_no_decoder_quantization=False
+    ):
+        denoise_row = []
+        for zd in tqdm(samples, desc=desc):
+            denoise_row.append(
+                self.decode_first_stage(
+                    zd.to(self.device), force_not_quantize=force_no_decoder_quantization
+                )
+            )
+        n_imgs_per_row = len(denoise_row)
+        denoise_row = torch.stack(denoise_row)  # n_log_step, n_row, C, H, W
+        denoise_grid = rearrange(denoise_row, "n b c h w -> b n c h w")
+        denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w")
+        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+        return denoise_grid
+
+    def get_first_stage_encoding(self, encoder_posterior):
+        if isinstance(encoder_posterior, DiagonalGaussianDistribution):
+            z = encoder_posterior.sample()
+        elif isinstance(encoder_posterior, torch.Tensor):
+            z = encoder_posterior
+        else:
+            raise NotImplementedError(
+                f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
+            )
+        return self.scale_factor * z
+
+    def get_learned_conditioning(self, c):
+        if self.cond_stage_forward is None:
+            if hasattr(self.cond_stage_model, "encode") and callable(
+                self.cond_stage_model.encode
+            ):
+                c = self.cond_stage_model.encode(c)
+                if isinstance(c, DiagonalGaussianDistribution):
+                    c = c.mode()
+            else:
+                c = self.cond_stage_model(c)
+        else:
+            assert hasattr(self.cond_stage_model, self.cond_stage_forward)
+            c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
+        return c
+
+    def meshgrid(self, h, w):
+        y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
+        x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
+
+        arr = torch.cat([y, x], dim=-1)
+        return arr
+
+    def delta_border(self, h, w):
+        """
+        :param h: height
+        :param w: width
+        :return: normalized distance to image border,
+         wtith min distance = 0 at border and max dist = 0.5 at image center
+        """
+        lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
+        arr = self.meshgrid(h, w) / lower_right_corner
+        dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
+        dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
+        edge_dist = torch.min(
+            torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1
+        )[0]
+        return edge_dist
+
+    def get_weighting(self, h, w, Ly, Lx, device):
+        weighting = self.delta_border(h, w)
+        weighting = torch.clip(
+            weighting,
+            self.split_input_params["clip_min_weight"],
+            self.split_input_params["clip_max_weight"],
+        )
+        weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
+
+        if self.split_input_params["tie_braker"]:
+            L_weighting = self.delta_border(Ly, Lx)
+            L_weighting = torch.clip(
+                L_weighting,
+                self.split_input_params["clip_min_tie_weight"],
+                self.split_input_params["clip_max_tie_weight"],
+            )
+
+            L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
+            weighting = weighting * L_weighting
+        return weighting
+
+    def get_fold_unfold(
+        self, x, kernel_size, stride, uf=1, df=1
+    ):  # todo load once not every time, shorten code
+        """
+        :param x: img of size (bs, c, h, w)
+        :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
+        """
+        bs, nc, h, w = x.shape
+
+        # number of crops in image
+        Ly = (h - kernel_size[0]) // stride[0] + 1
+        Lx = (w - kernel_size[1]) // stride[1] + 1
+
+        if uf == 1 and df == 1:
+            fold_params = dict(
+                kernel_size=kernel_size, dilation=1, padding=0, stride=stride
+            )
+            unfold = torch.nn.Unfold(**fold_params)
+
+            fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
+
+            weighting = self.get_weighting(
+                kernel_size[0], kernel_size[1], Ly, Lx, x.device
+            ).to(x.dtype)
+            normalization = fold(weighting).view(1, 1, h, w)  # normalizes the overlap
+            weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
+
+        elif uf > 1 and df == 1:
+            fold_params = dict(
+                kernel_size=kernel_size, dilation=1, padding=0, stride=stride
+            )
+            unfold = torch.nn.Unfold(**fold_params)
+
+            fold_params2 = dict(
+                kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
+                dilation=1,
+                padding=0,
+                stride=(stride[0] * uf, stride[1] * uf),
+            )
+            fold = torch.nn.Fold(
+                output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2
+            )
+
+            weighting = self.get_weighting(
+                kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device
+            ).to(x.dtype)
+            normalization = fold(weighting).view(
+                1, 1, h * uf, w * uf
+            )  # normalizes the overlap
+            weighting = weighting.view(
+                (1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)
+            )
+
+        elif df > 1 and uf == 1:
+            fold_params = dict(
+                kernel_size=kernel_size, dilation=1, padding=0, stride=stride
+            )
+            unfold = torch.nn.Unfold(**fold_params)
+
+            fold_params2 = dict(
+                kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
+                dilation=1,
+                padding=0,
+                stride=(stride[0] // df, stride[1] // df),
+            )
+            fold = torch.nn.Fold(
+                output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2
+            )
+
+            weighting = self.get_weighting(
+                kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device
+            ).to(x.dtype)
+            normalization = fold(weighting).view(
+                1, 1, h // df, w // df
+            )  # normalizes the overlap
+            weighting = weighting.view(
+                (1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)
+            )
+
+        else:
+            raise NotImplementedError
+
+        return fold, unfold, normalization, weighting
+
+    @torch.no_grad()
+    def get_input(
+        self,
+        batch,
+        k,
+        return_first_stage_outputs=False,
+        force_c_encode=False,
+        cond_key=None,
+        return_original_cond=False,
+        bs=None,
+        return_x=False,
+        mask_k=None,
+    ):
+        x = super().get_input(batch, k)
+        if bs is not None:
+            x = x[:bs]
+        x = x.to(self.device)
+        encoder_posterior = self.encode_first_stage(x)
+        z = self.get_first_stage_encoding(encoder_posterior).detach()
+
+        if mask_k is not None:
+            mx = super().get_input(batch, mask_k)
+            if bs is not None:
+                mx = mx[:bs]
+            mx = mx.to(self.device)
+            encoder_posterior = self.encode_first_stage(mx)
+            mx = self.get_first_stage_encoding(encoder_posterior).detach()
+
+        if self.model.conditioning_key is not None and not self.force_null_conditioning:
+            if cond_key is None:
+                cond_key = self.cond_stage_key
+            if cond_key != self.first_stage_key:
+                if cond_key in ["caption", "coordinates_bbox", "txt"]:
+                    xc = batch[cond_key]
+                elif cond_key in ["class_label", "cls"]:
+                    xc = batch
+                else:
+                    xc = super().get_input(batch, cond_key).to(self.device)
+            else:
+                xc = x
+            if not self.cond_stage_trainable or force_c_encode:
+                if isinstance(xc, dict) or isinstance(xc, list):
+                    c = self.get_learned_conditioning(xc)
+                else:
+                    c = self.get_learned_conditioning(xc.to(self.device))
+            else:
+                c = xc
+            if bs is not None:
+                c = c[:bs]
+
+            if self.use_positional_encodings:
+                pos_x, pos_y = self.compute_latent_shifts(batch)
+                ckey = __conditioning_keys__[self.model.conditioning_key]
+                c = {ckey: c, "pos_x": pos_x, "pos_y": pos_y}
+
+        else:
+            c = None
+            xc = None
+            if self.use_positional_encodings:
+                pos_x, pos_y = self.compute_latent_shifts(batch)
+                c = {"pos_x": pos_x, "pos_y": pos_y}
+        out = [z, c]
+        if return_first_stage_outputs:
+            xrec = self.decode_first_stage(z)
+            out.extend([x, xrec])
+        if return_x:
+            out.extend([x])
+        if return_original_cond:
+            out.append(xc)
+        if mask_k:
+            out.append(mx)
+        return out
+
+    @torch.no_grad()
+    def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+        if predict_cids:
+            if z.dim() == 4:
+                z = torch.argmax(z.exp(), dim=1).long()
+            z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+            z = rearrange(z, "b h w c -> b c h w").contiguous()
+
+        z = 1.0 / self.scale_factor * z
+        return self.first_stage_model.decode(z)
+
+    def decode_first_stage_grad(self, z, predict_cids=False, force_not_quantize=False):
+        if predict_cids:
+            if z.dim() == 4:
+                z = torch.argmax(z.exp(), dim=1).long()
+            z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+            z = rearrange(z, "b h w c -> b c h w").contiguous()
+
+        z = 1.0 / self.scale_factor * z
+        return self.first_stage_model.decode(z)
+
+    @torch.no_grad()
+    def encode_first_stage(self, x):
+        return self.first_stage_model.encode(x)
+
+    def shared_step(self, batch, **kwargs):
+        x, c = self.get_input(batch, self.first_stage_key)
+        loss = self(x, c)
+        return loss
+
+    def forward(self, x, c, *args, **kwargs):
+        t = torch.randint(
+            0, self.num_timesteps, (x.shape[0],), device=self.device
+        ).long()
+        # t = torch.randint(500, 501, (x.shape[0],), device=self.device).long()
+        if self.model.conditioning_key is not None:
+            assert c is not None
+            if self.cond_stage_trainable:
+                c = self.get_learned_conditioning(c)
+            if self.shorten_cond_schedule:  # TODO: drop this option
+                tc = self.cond_ids[t].to(self.device)
+                c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
+        return self.p_losses(x, c, t, *args, **kwargs)
+
+    def apply_model(self, x_noisy, t, cond, return_ids=False):
+        if isinstance(cond, dict):
+            # hybrid case, cond is expected to be a dict
+            pass
+        else:
+            if not isinstance(cond, list):
+                cond = [cond]
+            key = (
+                "c_concat" if self.model.conditioning_key == "concat" else "c_crossattn"
+            )
+            cond = {key: cond}
+
+        x_recon = self.model(x_noisy, t, **cond)
+
+        if isinstance(x_recon, tuple) and not return_ids:
+            return x_recon[0]
+        else:
+            return x_recon
+
+    def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
+        return (
+            extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
+            - pred_xstart
+        ) / extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
+
+    def _prior_bpd(self, x_start):
+        """
+        Get the prior KL term for the variational lower-bound, measured in
+        bits-per-dim.
+        This term can't be optimized, as it only depends on the encoder.
+        :param x_start: the [N x C x ...] tensor of inputs.
+        :return: a batch of [N] KL values (in bits), one per batch element.
+        """
+        batch_size = x_start.shape[0]
+        t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
+        qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
+        kl_prior = normal_kl(
+            mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
+        )
+        return mean_flat(kl_prior) / np.log(2.0)
+
+    def p_mean_variance(
+        self,
+        x,
+        c,
+        t,
+        clip_denoised: bool,
+        return_codebook_ids=False,
+        quantize_denoised=False,
+        return_x0=False,
+        score_corrector=None,
+        corrector_kwargs=None,
+    ):
+        t_in = t
+        model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
+
+        if score_corrector is not None:
+            assert self.parameterization == "eps"
+            model_out = score_corrector.modify_score(
+                self, model_out, x, t, c, **corrector_kwargs
+            )
+
+        if return_codebook_ids:
+            model_out, logits = model_out
+
+        if self.parameterization == "eps":
+            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+        elif self.parameterization == "x0":
+            x_recon = model_out
+        else:
+            raise NotImplementedError()
+
+        if clip_denoised:
+            x_recon.clamp_(-1.0, 1.0)
+        if quantize_denoised:
+            x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
+        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
+            x_start=x_recon, x_t=x, t=t
+        )
+        if return_codebook_ids:
+            return model_mean, posterior_variance, posterior_log_variance, logits
+        elif return_x0:
+            return model_mean, posterior_variance, posterior_log_variance, x_recon
+        else:
+            return model_mean, posterior_variance, posterior_log_variance
+
+    @torch.no_grad()
+    def p_sample(
+        self,
+        x,
+        c,
+        t,
+        clip_denoised=False,
+        repeat_noise=False,
+        return_codebook_ids=False,
+        quantize_denoised=False,
+        return_x0=False,
+        temperature=1.0,
+        noise_dropout=0.0,
+        score_corrector=None,
+        corrector_kwargs=None,
+    ):
+        b, *_, device = *x.shape, x.device
+        outputs = self.p_mean_variance(
+            x=x,
+            c=c,
+            t=t,
+            clip_denoised=clip_denoised,
+            return_codebook_ids=return_codebook_ids,
+            quantize_denoised=quantize_denoised,
+            return_x0=return_x0,
+            score_corrector=score_corrector,
+            corrector_kwargs=corrector_kwargs,
+        )
+        if return_codebook_ids:
+            raise DeprecationWarning("Support dropped.")
+            model_mean, _, model_log_variance, logits = outputs
+        elif return_x0:
+            model_mean, _, model_log_variance, x0 = outputs
+        else:
+            model_mean, _, model_log_variance = outputs
+
+        noise = noise_like(x.shape, device, repeat_noise) * temperature
+        if noise_dropout > 0.0:
+            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+        # no noise when t == 0
+        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+
+        if return_codebook_ids:
+            return model_mean + nonzero_mask * (
+                0.5 * model_log_variance
+            ).exp() * noise, logits.argmax(dim=1)
+        if return_x0:
+            return (
+                model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise,
+                x0,
+            )
+        else:
+            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+    @torch.no_grad()
+    def progressive_denoising(
+        self,
+        cond,
+        shape,
+        verbose=True,
+        callback=None,
+        quantize_denoised=False,
+        img_callback=None,
+        mask=None,
+        x0=None,
+        temperature=1.0,
+        noise_dropout=0.0,
+        score_corrector=None,
+        corrector_kwargs=None,
+        batch_size=None,
+        x_T=None,
+        start_T=None,
+        log_every_t=None,
+    ):
+        if not log_every_t:
+            log_every_t = self.log_every_t
+        timesteps = self.num_timesteps
+        if batch_size is not None:
+            b = batch_size if batch_size is not None else shape[0]
+            shape = [batch_size] + list(shape)
+        else:
+            b = batch_size = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=self.device)
+        else:
+            img = x_T
+        intermediates = []
+        if cond is not None:
+            if isinstance(cond, dict):
+                cond = {
+                    key: cond[key][:batch_size]
+                    if not isinstance(cond[key], list)
+                    else list(map(lambda x: x[:batch_size], cond[key]))
+                    for key in cond
+                }
+            else:
+                cond = (
+                    [c[:batch_size] for c in cond]
+                    if isinstance(cond, list)
+                    else cond[:batch_size]
+                )
+
+        if start_T is not None:
+            timesteps = min(timesteps, start_T)
+        iterator = (
+            tqdm(
+                reversed(range(0, timesteps)),
+                desc="Progressive Generation",
+                total=timesteps,
+            )
+            if verbose
+            else reversed(range(0, timesteps))
+        )
+        if type(temperature) == float:
+            temperature = [temperature] * timesteps
+
+        for i in iterator:
+            ts = torch.full((b,), i, device=self.device, dtype=torch.long)
+            if self.shorten_cond_schedule:
+                assert self.model.conditioning_key != "hybrid"
+                tc = self.cond_ids[ts].to(cond.device)
+                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+            img, x0_partial = self.p_sample(
+                img,
+                cond,
+                ts,
+                clip_denoised=self.clip_denoised,
+                quantize_denoised=quantize_denoised,
+                return_x0=True,
+                temperature=temperature[i],
+                noise_dropout=noise_dropout,
+                score_corrector=score_corrector,
+                corrector_kwargs=corrector_kwargs,
+            )
+            if mask is not None:
+                assert x0 is not None
+                img_orig = self.q_sample(x0, ts)
+                img = img_orig * mask + (1.0 - mask) * img
+
+            if i % log_every_t == 0 or i == timesteps - 1:
+                intermediates.append(x0_partial)
+            if callback:
+                callback(i)
+            if img_callback:
+                img_callback(img, i)
+        return img, intermediates
+
+    @torch.no_grad()
+    def p_sample_loop(
+        self,
+        cond,
+        shape,
+        return_intermediates=False,
+        x_T=None,
+        verbose=True,
+        callback=None,
+        timesteps=None,
+        quantize_denoised=False,
+        mask=None,
+        x0=None,
+        img_callback=None,
+        start_T=None,
+        log_every_t=None,
+    ):
+        if not log_every_t:
+            log_every_t = self.log_every_t
+        device = self.betas.device
+        b = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=device)
+        else:
+            img = x_T
+
+        intermediates = [img]
+        if timesteps is None:
+            timesteps = self.num_timesteps
+
+        if start_T is not None:
+            timesteps = min(timesteps, start_T)
+        iterator = (
+            tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps)
+            if verbose
+            else reversed(range(0, timesteps))
+        )
+
+        if mask is not None:
+            assert x0 is not None
+            assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
+
+        for i in iterator:
+            ts = torch.full((b,), i, device=device, dtype=torch.long)
+            if self.shorten_cond_schedule:
+                assert self.model.conditioning_key != "hybrid"
+                tc = self.cond_ids[ts].to(cond.device)
+                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+            img = self.p_sample(
+                img,
+                cond,
+                ts,
+                clip_denoised=self.clip_denoised,
+                quantize_denoised=quantize_denoised,
+            )
+            if mask is not None:
+                img_orig = self.q_sample(x0, ts)
+                img = img_orig * mask + (1.0 - mask) * img
+
+            if i % log_every_t == 0 or i == timesteps - 1:
+                intermediates.append(img)
+            if callback:
+                callback(i)
+            if img_callback:
+                img_callback(img, i)
+
+        if return_intermediates:
+            return img, intermediates
+        return img
+
+    @torch.no_grad()
+    def sample(
+        self,
+        cond,
+        batch_size=16,
+        return_intermediates=False,
+        x_T=None,
+        verbose=True,
+        timesteps=None,
+        quantize_denoised=False,
+        mask=None,
+        x0=None,
+        shape=None,
+        **kwargs,
+    ):
+        if shape is None:
+            shape = (batch_size, self.channels, self.image_size, self.image_size)
+        if cond is not None:
+            if isinstance(cond, dict):
+                cond = {
+                    key: cond[key][:batch_size]
+                    if not isinstance(cond[key], list)
+                    else list(map(lambda x: x[:batch_size], cond[key]))
+                    for key in cond
+                }
+            else:
+                cond = (
+                    [c[:batch_size] for c in cond]
+                    if isinstance(cond, list)
+                    else cond[:batch_size]
+                )
+        return self.p_sample_loop(
+            cond,
+            shape,
+            return_intermediates=return_intermediates,
+            x_T=x_T,
+            verbose=verbose,
+            timesteps=timesteps,
+            quantize_denoised=quantize_denoised,
+            mask=mask,
+            x0=x0,
+        )
+
+    @torch.no_grad()
+    def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
+        if ddim:
+            ddim_sampler = DDIMSampler(self)
+            shape = (self.channels, self.image_size, self.image_size)
+            samples, intermediates = ddim_sampler.sample(
+                ddim_steps, batch_size, shape, cond, verbose=False, **kwargs
+            )
+
+        else:
+            samples, intermediates = self.sample(
+                cond=cond, batch_size=batch_size, return_intermediates=True, **kwargs
+            )
+
+        return samples, intermediates
+
+    @torch.no_grad()
+    def get_unconditional_conditioning(self, batch_size, null_label=None):
+        if null_label is not None:
+            xc = null_label
+            if isinstance(xc, ListConfig):
+                xc = list(xc)
+            if isinstance(xc, dict) or isinstance(xc, list):
+                c = self.get_learned_conditioning(xc)
+            else:
+                if hasattr(xc, "to"):
+                    xc = xc.to(self.device)
+                c = self.get_learned_conditioning(xc)
+        else:
+            if self.cond_stage_key in ["class_label", "cls"]:
+                xc = self.cond_stage_model.get_unconditional_conditioning(
+                    batch_size, device=self.device
+                )
+                return self.get_learned_conditioning(xc)
+            else:
+                raise NotImplementedError("todo")
+        if isinstance(c, list):  # in case the encoder gives us a list
+            for i in range(len(c)):
+                c[i] = repeat(c[i], "1 ... -> b ...", b=batch_size).to(self.device)
+        else:
+            c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
+        return c
+
+    @torch.no_grad()
+    def log_images(
+        self,
+        batch,
+        N=8,
+        n_row=4,
+        sample=True,
+        ddim_steps=50,
+        ddim_eta=0.0,
+        return_keys=None,
+        quantize_denoised=True,
+        inpaint=True,
+        plot_denoise_rows=False,
+        plot_progressive_rows=True,
+        plot_diffusion_rows=True,
+        unconditional_guidance_scale=1.0,
+        unconditional_guidance_label=None,
+        use_ema_scope=True,
+        **kwargs,
+    ):
+        ema_scope = self.ema_scope if use_ema_scope else nullcontext
+        use_ddim = ddim_steps is not None
+
+        log = dict()
+        z, c, x, xrec, xc = self.get_input(
+            batch,
+            self.first_stage_key,
+            return_first_stage_outputs=True,
+            force_c_encode=True,
+            return_original_cond=True,
+            bs=N,
+        )
+        N = min(x.shape[0], N)
+        n_row = min(x.shape[0], n_row)
+        log["inputs"] = x
+        log["reconstruction"] = xrec
+        if self.model.conditioning_key is not None:
+            if hasattr(self.cond_stage_model, "decode"):
+                xc = self.cond_stage_model.decode(c)
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ["caption", "txt"]:
+                xc = log_txt_as_img(
+                    (x.shape[2], x.shape[3]),
+                    batch[self.cond_stage_key],
+                    size=x.shape[2] // 25,
+                )
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ["class_label", "cls"]:
+                try:
+                    xc = log_txt_as_img(
+                        (x.shape[2], x.shape[3]),
+                        batch["human_label"],
+                        size=x.shape[2] // 25,
+                    )
+                    log["conditioning"] = xc
+                except KeyError:
+                    # probably no "human_label" in batch
+                    pass
+            elif isimage(xc):
+                log["conditioning"] = xc
+            if ismap(xc):
+                log["original_conditioning"] = self.to_rgb(xc)
+
+        if plot_diffusion_rows:
+            # get diffusion row
+            diffusion_row = list()
+            z_start = z[:n_row]
+            for t in range(self.num_timesteps):
+                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+                    t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
+                    t = t.to(self.device).long()
+                    noise = torch.randn_like(z_start)
+                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+                    diffusion_row.append(self.decode_first_stage(z_noisy))
+
+            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
+            diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w")
+            diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w")
+            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+            log["diffusion_row"] = diffusion_grid
+
+        if sample:
+            # get denoise row
+            with ema_scope("Sampling"):
+                samples, z_denoise_row = self.sample_log(
+                    cond=c,
+                    batch_size=N,
+                    ddim=use_ddim,
+                    ddim_steps=ddim_steps,
+                    eta=ddim_eta,
+                )
+                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+            x_samples = self.decode_first_stage(samples)
+            log["samples"] = x_samples
+            if plot_denoise_rows:
+                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+                log["denoise_row"] = denoise_grid
+
+            if (
+                quantize_denoised
+                and not isinstance(self.first_stage_model, AutoencoderKL)
+                and not isinstance(self.first_stage_model, IdentityFirstStage)
+            ):
+                # also display when quantizing x0 while sampling
+                with ema_scope("Plotting Quantized Denoised"):
+                    samples, z_denoise_row = self.sample_log(
+                        cond=c,
+                        batch_size=N,
+                        ddim=use_ddim,
+                        ddim_steps=ddim_steps,
+                        eta=ddim_eta,
+                        quantize_denoised=True,
+                    )
+                    # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
+                    #                                      quantize_denoised=True)
+                x_samples = self.decode_first_stage(samples.to(self.device))
+                log["samples_x0_quantized"] = x_samples
+
+        if unconditional_guidance_scale > 1.0:
+            uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
+            if self.model.conditioning_key == "crossattn-adm":
+                uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
+            with ema_scope("Sampling with classifier-free guidance"):
+                samples_cfg, _ = self.sample_log(
+                    cond=c,
+                    batch_size=N,
+                    ddim=use_ddim,
+                    ddim_steps=ddim_steps,
+                    eta=ddim_eta,
+                    unconditional_guidance_scale=unconditional_guidance_scale,
+                    unconditional_conditioning=uc,
+                )
+                x_samples_cfg = self.decode_first_stage(samples_cfg)
+                log[
+                    f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"
+                ] = x_samples_cfg
+
+        if inpaint:
+            # make a simple center square
+            b, h, w = z.shape[0], z.shape[2], z.shape[3]
+            mask = torch.ones(N, h, w).to(self.device)
+            # zeros will be filled in
+            mask[:, h // 4 : 3 * h // 4, w // 4 : 3 * w // 4] = 0.0
+            mask = mask[:, None, ...]
+            with ema_scope("Plotting Inpaint"):
+                samples, _ = self.sample_log(
+                    cond=c,
+                    batch_size=N,
+                    ddim=use_ddim,
+                    eta=ddim_eta,
+                    ddim_steps=ddim_steps,
+                    x0=z[:N],
+                    mask=mask,
+                )
+            x_samples = self.decode_first_stage(samples.to(self.device))
+            log["samples_inpainting"] = x_samples
+            log["mask"] = mask
+
+            # outpaint
+            mask = 1.0 - mask
+            with ema_scope("Plotting Outpaint"):
+                samples, _ = self.sample_log(
+                    cond=c,
+                    batch_size=N,
+                    ddim=use_ddim,
+                    eta=ddim_eta,
+                    ddim_steps=ddim_steps,
+                    x0=z[:N],
+                    mask=mask,
+                )
+            x_samples = self.decode_first_stage(samples.to(self.device))
+            log["samples_outpainting"] = x_samples
+
+        if plot_progressive_rows:
+            with ema_scope("Plotting Progressives"):
+                img, progressives = self.progressive_denoising(
+                    c,
+                    shape=(self.channels, self.image_size, self.image_size),
+                    batch_size=N,
+                )
+            prog_row = self._get_denoise_row_from_list(
+                progressives, desc="Progressive Generation"
+            )
+            log["progressive_row"] = prog_row
+
+        if return_keys:
+            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+                return log
+            else:
+                return {key: log[key] for key in return_keys}
+        return log
+
+    def configure_optimizers(self):
+        lr = self.learning_rate
+        params = list(self.model.parameters())
+        if self.cond_stage_trainable:
+            print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
+            params = params + list(self.cond_stage_model.parameters())
+        if self.learn_logvar:
+            print("Diffusion model optimizing logvar")
+            params.append(self.logvar)
+        opt = torch.optim.AdamW(params, lr=lr)
+        if self.use_scheduler:
+            assert "target" in self.scheduler_config
+            scheduler = instantiate_from_config(self.scheduler_config)
+
+            print("Setting up LambdaLR scheduler...")
+            scheduler = [
+                {
+                    "scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule),
+                    "interval": "step",
+                    "frequency": 1,
+                }
+            ]
+            return [opt], scheduler
+        return opt
+
+    @torch.no_grad()
+    def to_rgb(self, x):
+        x = x.float()
+        if not hasattr(self, "colorize"):
+            self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
+        x = nn.functional.conv2d(x, weight=self.colorize)
+        x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
+        return x
+
+
+class DiffusionWrapper(torch.nn.Module):
+    def __init__(self, diff_model_config, conditioning_key):
+        super().__init__()
+        self.sequential_cross_attn = diff_model_config.pop(
+            "sequential_crossattn", False
+        )
+        self.diffusion_model = instantiate_from_config(diff_model_config)
+        self.conditioning_key = conditioning_key
+        assert self.conditioning_key in [
+            None,
+            "concat",
+            "crossattn",
+            "hybrid",
+            "adm",
+            "hybrid-adm",
+            "crossattn-adm",
+        ]
+
+    def forward(
+        self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None
+    ):
+        if self.conditioning_key is None:
+            out = self.diffusion_model(x, t)
+        elif self.conditioning_key == "concat":
+            xc = torch.cat([x] + c_concat, dim=1)
+            out = self.diffusion_model(xc, t)
+        elif self.conditioning_key == "crossattn":
+            if not self.sequential_cross_attn:
+                cc = torch.cat(c_crossattn, 1)
+            else:
+                cc = c_crossattn
+            out = self.diffusion_model(x, t, context=cc)
+        elif self.conditioning_key == "hybrid":
+            xc = torch.cat([x] + c_concat, dim=1)
+            cc = torch.cat(c_crossattn, 1)
+            out = self.diffusion_model(xc, t, context=cc)
+        elif self.conditioning_key == "hybrid-adm":
+            assert c_adm is not None
+            xc = torch.cat([x] + c_concat, dim=1)
+            cc = torch.cat(c_crossattn, 1)
+            out = self.diffusion_model(xc, t, context=cc, y=c_adm)
+        elif self.conditioning_key == "crossattn-adm":
+            assert c_adm is not None
+            cc = torch.cat(c_crossattn, 1)
+            out = self.diffusion_model(x, t, context=cc, y=c_adm)
+        elif self.conditioning_key == "adm":
+            cc = c_crossattn[0]
+            out = self.diffusion_model(x, t, y=cc)
+        else:
+            raise NotImplementedError()
+
+        return out
+
+
+class LatentUpscaleDiffusion(LatentDiffusion):
+    def __init__(
+        self,
+        *args,
+        low_scale_config,
+        low_scale_key="LR",
+        noise_level_key=None,
+        **kwargs,
+    ):
+        super().__init__(*args, **kwargs)
+        # assumes that neither the cond_stage nor the low_scale_model contain trainable params
+        assert not self.cond_stage_trainable
+        self.instantiate_low_stage(low_scale_config)
+        self.low_scale_key = low_scale_key
+        self.noise_level_key = noise_level_key
+
+    def instantiate_low_stage(self, config):
+        model = instantiate_from_config(config)
+        self.low_scale_model = model.eval()
+        self.low_scale_model.train = disabled_train
+        for param in self.low_scale_model.parameters():
+            param.requires_grad = False
+
+    @torch.no_grad()
+    def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
+        if not log_mode:
+            z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
+        else:
+            z, c, x, xrec, xc = super().get_input(
+                batch,
+                self.first_stage_key,
+                return_first_stage_outputs=True,
+                force_c_encode=True,
+                return_original_cond=True,
+                bs=bs,
+            )
+        x_low = batch[self.low_scale_key][:bs]
+        x_low = rearrange(x_low, "b h w c -> b c h w")
+        x_low = x_low.to(memory_format=torch.contiguous_format).float()
+        zx, noise_level = self.low_scale_model(x_low)
+        if self.noise_level_key is not None:
+            # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
+            raise NotImplementedError("TODO")
+
+        all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
+        if log_mode:
+            # TODO: maybe disable if too expensive
+            x_low_rec = self.low_scale_model.decode(zx)
+            return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
+        return z, all_conds
+
+    @torch.no_grad()
+    def log_images(
+        self,
+        batch,
+        N=8,
+        n_row=4,
+        sample=True,
+        ddim_steps=200,
+        ddim_eta=1.0,
+        return_keys=None,
+        plot_denoise_rows=False,
+        plot_progressive_rows=True,
+        plot_diffusion_rows=True,
+        unconditional_guidance_scale=1.0,
+        unconditional_guidance_label=None,
+        use_ema_scope=True,
+        **kwargs,
+    ):
+        ema_scope = self.ema_scope if use_ema_scope else nullcontext
+        use_ddim = ddim_steps is not None
+
+        log = dict()
+        z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(
+            batch, self.first_stage_key, bs=N, log_mode=True
+        )
+        N = min(x.shape[0], N)
+        n_row = min(x.shape[0], n_row)
+        log["inputs"] = x
+        log["reconstruction"] = xrec
+        log["x_lr"] = x_low
+        log[
+            f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"
+        ] = x_low_rec
+        if self.model.conditioning_key is not None:
+            if hasattr(self.cond_stage_model, "decode"):
+                xc = self.cond_stage_model.decode(c)
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ["caption", "txt"]:
+                xc = log_txt_as_img(
+                    (x.shape[2], x.shape[3]),
+                    batch[self.cond_stage_key],
+                    size=x.shape[2] // 25,
+                )
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ["class_label", "cls"]:
+                xc = log_txt_as_img(
+                    (x.shape[2], x.shape[3]),
+                    batch["human_label"],
+                    size=x.shape[2] // 25,
+                )
+                log["conditioning"] = xc
+            elif isimage(xc):
+                log["conditioning"] = xc
+            if ismap(xc):
+                log["original_conditioning"] = self.to_rgb(xc)
+
+        if plot_diffusion_rows:
+            # get diffusion row
+            diffusion_row = list()
+            z_start = z[:n_row]
+            for t in range(self.num_timesteps):
+                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+                    t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
+                    t = t.to(self.device).long()
+                    noise = torch.randn_like(z_start)
+                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+                    diffusion_row.append(self.decode_first_stage(z_noisy))
+
+            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
+            diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w")
+            diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w")
+            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+            log["diffusion_row"] = diffusion_grid
+
+        if sample:
+            # get denoise row
+            with ema_scope("Sampling"):
+                samples, z_denoise_row = self.sample_log(
+                    cond=c,
+                    batch_size=N,
+                    ddim=use_ddim,
+                    ddim_steps=ddim_steps,
+                    eta=ddim_eta,
+                )
+                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+            x_samples = self.decode_first_stage(samples)
+            log["samples"] = x_samples
+            if plot_denoise_rows:
+                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+                log["denoise_row"] = denoise_grid
+
+        if unconditional_guidance_scale > 1.0:
+            uc_tmp = self.get_unconditional_conditioning(
+                N, unconditional_guidance_label
+            )
+            # TODO explore better "unconditional" choices for the other keys
+            # maybe guide away from empty text label and highest noise level and maximally degraded zx?
+            uc = dict()
+            for k in c:
+                if k == "c_crossattn":
+                    assert isinstance(c[k], list) and len(c[k]) == 1
+                    uc[k] = [uc_tmp]
+                elif k == "c_adm":  # todo: only run with text-based guidance?
+                    assert isinstance(c[k], torch.Tensor)
+                    # uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
+                    uc[k] = c[k]
+                elif isinstance(c[k], list):
+                    uc[k] = [c[k][i] for i in range(len(c[k]))]
+                else:
+                    uc[k] = c[k]
+
+            with ema_scope("Sampling with classifier-free guidance"):
+                samples_cfg, _ = self.sample_log(
+                    cond=c,
+                    batch_size=N,
+                    ddim=use_ddim,
+                    ddim_steps=ddim_steps,
+                    eta=ddim_eta,
+                    unconditional_guidance_scale=unconditional_guidance_scale,
+                    unconditional_conditioning=uc,
+                )
+                x_samples_cfg = self.decode_first_stage(samples_cfg)
+                log[
+                    f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"
+                ] = x_samples_cfg
+
+        if plot_progressive_rows:
+            with ema_scope("Plotting Progressives"):
+                img, progressives = self.progressive_denoising(
+                    c,
+                    shape=(self.channels, self.image_size, self.image_size),
+                    batch_size=N,
+                )
+            prog_row = self._get_denoise_row_from_list(
+                progressives, desc="Progressive Generation"
+            )
+            log["progressive_row"] = prog_row
+
+        return log
+
+
+class LatentFinetuneDiffusion(LatentDiffusion):
+    """
+    Basis for different finetunas, such as inpainting or depth2image
+    To disable finetuning mode, set finetune_keys to None
+    """
+
+    def __init__(
+        self,
+        concat_keys: tuple,
+        finetune_keys=(
+            "model.diffusion_model.input_blocks.0.0.weight",
+            "model_ema.diffusion_modelinput_blocks00weight",
+        ),
+        keep_finetune_dims=4,
+        # if model was trained without concat mode before and we would like to keep these channels
+        c_concat_log_start=None,  # to log reconstruction of c_concat codes
+        c_concat_log_end=None,
+        *args,
+        **kwargs,
+    ):
+        ckpt_path = kwargs.pop("ckpt_path", None)
+        ignore_keys = kwargs.pop("ignore_keys", list())
+        super().__init__(*args, **kwargs)
+        self.finetune_keys = finetune_keys
+        self.concat_keys = concat_keys
+        self.keep_dims = keep_finetune_dims
+        self.c_concat_log_start = c_concat_log_start
+        self.c_concat_log_end = c_concat_log_end
+        if exists(self.finetune_keys):
+            assert exists(ckpt_path), "can only finetune from a given checkpoint"
+        if exists(ckpt_path):
+            self.init_from_ckpt(ckpt_path, ignore_keys)
+
+    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+        sd = torch.load(path, map_location="cpu")
+        if "state_dict" in list(sd.keys()):
+            sd = sd["state_dict"]
+        keys = list(sd.keys())
+        for k in keys:
+            for ik in ignore_keys:
+                if k.startswith(ik):
+                    print("Deleting key {} from state_dict.".format(k))
+                    del sd[k]
+
+            # make it explicit, finetune by including extra input channels
+            if exists(self.finetune_keys) and k in self.finetune_keys:
+                new_entry = None
+                for name, param in self.named_parameters():
+                    if name in self.finetune_keys:
+                        print(
+                            f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only"
+                        )
+                        new_entry = torch.zeros_like(param)  # zero init
+                assert exists(new_entry), "did not find matching parameter to modify"
+                new_entry[:, : self.keep_dims, ...] = sd[k]
+                sd[k] = new_entry
+
+        missing, unexpected = (
+            self.load_state_dict(sd, strict=False)
+            if not only_model
+            else self.model.load_state_dict(sd, strict=False)
+        )
+        print(
+            f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
+        )
+        if len(missing) > 0:
+            print(f"Missing Keys: {missing}")
+        if len(unexpected) > 0:
+            print(f"Unexpected Keys: {unexpected}")
+
+    @torch.no_grad()
+    def log_images(
+        self,
+        batch,
+        N=8,
+        n_row=4,
+        sample=True,
+        ddim_steps=200,
+        ddim_eta=1.0,
+        return_keys=None,
+        quantize_denoised=True,
+        inpaint=True,
+        plot_denoise_rows=False,
+        plot_progressive_rows=True,
+        plot_diffusion_rows=True,
+        unconditional_guidance_scale=1.0,
+        unconditional_guidance_label=None,
+        use_ema_scope=True,
+        **kwargs,
+    ):
+        ema_scope = self.ema_scope if use_ema_scope else nullcontext
+        use_ddim = ddim_steps is not None
+
+        log = dict()
+        z, c, x, xrec, xc = self.get_input(
+            batch, self.first_stage_key, bs=N, return_first_stage_outputs=True
+        )
+        c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
+        N = min(x.shape[0], N)
+        n_row = min(x.shape[0], n_row)
+        log["inputs"] = x
+        log["reconstruction"] = xrec
+        if self.model.conditioning_key is not None:
+            if hasattr(self.cond_stage_model, "decode"):
+                xc = self.cond_stage_model.decode(c)
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ["caption", "txt"]:
+                xc = log_txt_as_img(
+                    (x.shape[2], x.shape[3]),
+                    batch[self.cond_stage_key],
+                    size=x.shape[2] // 25,
+                )
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ["class_label", "cls"]:
+                xc = log_txt_as_img(
+                    (x.shape[2], x.shape[3]),
+                    batch["human_label"],
+                    size=x.shape[2] // 25,
+                )
+                log["conditioning"] = xc
+            elif isimage(xc):
+                log["conditioning"] = xc
+            if ismap(xc):
+                log["original_conditioning"] = self.to_rgb(xc)
+
+        if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
+            log["c_concat_decoded"] = self.decode_first_stage(
+                c_cat[:, self.c_concat_log_start : self.c_concat_log_end]
+            )
+
+        if plot_diffusion_rows:
+            # get diffusion row
+            diffusion_row = list()
+            z_start = z[:n_row]
+            for t in range(self.num_timesteps):
+                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+                    t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
+                    t = t.to(self.device).long()
+                    noise = torch.randn_like(z_start)
+                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+                    diffusion_row.append(self.decode_first_stage(z_noisy))
+
+            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
+            diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w")
+            diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w")
+            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+            log["diffusion_row"] = diffusion_grid
+
+        if sample:
+            # get denoise row
+            with ema_scope("Sampling"):
+                samples, z_denoise_row = self.sample_log(
+                    cond={"c_concat": [c_cat], "c_crossattn": [c]},
+                    batch_size=N,
+                    ddim=use_ddim,
+                    ddim_steps=ddim_steps,
+                    eta=ddim_eta,
+                )
+                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+            x_samples = self.decode_first_stage(samples)
+            log["samples"] = x_samples
+            if plot_denoise_rows:
+                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+                log["denoise_row"] = denoise_grid
+
+        if unconditional_guidance_scale > 1.0:
+            uc_cross = self.get_unconditional_conditioning(
+                N, unconditional_guidance_label
+            )
+            uc_cat = c_cat
+            uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
+            with ema_scope("Sampling with classifier-free guidance"):
+                samples_cfg, _ = self.sample_log(
+                    cond={"c_concat": [c_cat], "c_crossattn": [c]},
+                    batch_size=N,
+                    ddim=use_ddim,
+                    ddim_steps=ddim_steps,
+                    eta=ddim_eta,
+                    unconditional_guidance_scale=unconditional_guidance_scale,
+                    unconditional_conditioning=uc_full,
+                )
+                x_samples_cfg = self.decode_first_stage(samples_cfg)
+                log[
+                    f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"
+                ] = x_samples_cfg
+
+        return log
+
+
+class LatentInpaintDiffusion(LatentFinetuneDiffusion):
+    """
+    can either run as pure inpainting model (only concat mode) or with mixed conditionings,
+    e.g. mask as concat and text via cross-attn.
+    To disable finetuning mode, set finetune_keys to None
+    """
+
+    def __init__(
+        self,
+        concat_keys=("mask", "masked_image"),
+        masked_image_key="masked_image",
+        *args,
+        **kwargs,
+    ):
+        super().__init__(concat_keys, *args, **kwargs)
+        self.masked_image_key = masked_image_key
+        assert self.masked_image_key in concat_keys
+
+    @torch.no_grad()
+    def get_input(
+        self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
+    ):
+        # note: restricted to non-trainable encoders currently
+        assert (
+            not self.cond_stage_trainable
+        ), "trainable cond stages not yet supported for inpainting"
+        z, c, x, xrec, xc = super().get_input(
+            batch,
+            self.first_stage_key,
+            return_first_stage_outputs=True,
+            force_c_encode=True,
+            return_original_cond=True,
+            bs=bs,
+        )
+
+        assert exists(self.concat_keys)
+        c_cat = list()
+        for ck in self.concat_keys:
+            cc = (
+                rearrange(batch[ck], "b h w c -> b c h w")
+                .to(memory_format=torch.contiguous_format)
+                .float()
+            )
+            if bs is not None:
+                cc = cc[:bs]
+                cc = cc.to(self.device)
+            bchw = z.shape
+            if ck != self.masked_image_key:
+                cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
+            else:
+                cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
+            c_cat.append(cc)
+        c_cat = torch.cat(c_cat, dim=1)
+        all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
+        if return_first_stage_outputs:
+            return z, all_conds, x, xrec, xc
+        return z, all_conds
+
+    @torch.no_grad()
+    def log_images(self, *args, **kwargs):
+        log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
+        log["masked_image"] = (
+            rearrange(args[0]["masked_image"], "b h w c -> b c h w")
+            .to(memory_format=torch.contiguous_format)
+            .float()
+        )
+        return log
+
+
+class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
+    """
+    condition on monocular depth estimation
+    """
+
+    def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
+        super().__init__(concat_keys=concat_keys, *args, **kwargs)
+        self.depth_model = instantiate_from_config(depth_stage_config)
+        self.depth_stage_key = concat_keys[0]
+
+    @torch.no_grad()
+    def get_input(
+        self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
+    ):
+        # note: restricted to non-trainable encoders currently
+        assert (
+            not self.cond_stage_trainable
+        ), "trainable cond stages not yet supported for depth2img"
+        z, c, x, xrec, xc = super().get_input(
+            batch,
+            self.first_stage_key,
+            return_first_stage_outputs=True,
+            force_c_encode=True,
+            return_original_cond=True,
+            bs=bs,
+        )
+
+        assert exists(self.concat_keys)
+        assert len(self.concat_keys) == 1
+        c_cat = list()
+        for ck in self.concat_keys:
+            cc = batch[ck]
+            if bs is not None:
+                cc = cc[:bs]
+                cc = cc.to(self.device)
+            cc = self.depth_model(cc)
+            cc = torch.nn.functional.interpolate(
+                cc,
+                size=z.shape[2:],
+                mode="bicubic",
+                align_corners=False,
+            )
+
+            depth_min, depth_max = torch.amin(
+                cc, dim=[1, 2, 3], keepdim=True
+            ), torch.amax(cc, dim=[1, 2, 3], keepdim=True)
+            cc = 2.0 * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.0
+            c_cat.append(cc)
+        c_cat = torch.cat(c_cat, dim=1)
+        all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
+        if return_first_stage_outputs:
+            return z, all_conds, x, xrec, xc
+        return z, all_conds
+
+    @torch.no_grad()
+    def log_images(self, *args, **kwargs):
+        log = super().log_images(*args, **kwargs)
+        depth = self.depth_model(args[0][self.depth_stage_key])
+        depth_min, depth_max = torch.amin(
+            depth, dim=[1, 2, 3], keepdim=True
+        ), torch.amax(depth, dim=[1, 2, 3], keepdim=True)
+        log["depth"] = 2.0 * (depth - depth_min) / (depth_max - depth_min) - 1.0
+        return log
+
+
+class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
+    """
+    condition on low-res image (and optionally on some spatial noise augmentation)
+    """
+
+    def __init__(
+        self,
+        concat_keys=("lr",),
+        reshuffle_patch_size=None,
+        low_scale_config=None,
+        low_scale_key=None,
+        *args,
+        **kwargs,
+    ):
+        super().__init__(concat_keys=concat_keys, *args, **kwargs)
+        self.reshuffle_patch_size = reshuffle_patch_size
+        self.low_scale_model = None
+        if low_scale_config is not None:
+            print("Initializing a low-scale model")
+            assert exists(low_scale_key)
+            self.instantiate_low_stage(low_scale_config)
+            self.low_scale_key = low_scale_key
+
+    def instantiate_low_stage(self, config):
+        model = instantiate_from_config(config)
+        self.low_scale_model = model.eval()
+        self.low_scale_model.train = disabled_train
+        for param in self.low_scale_model.parameters():
+            param.requires_grad = False
+
+    @torch.no_grad()
+    def get_input(
+        self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
+    ):
+        # note: restricted to non-trainable encoders currently
+        assert (
+            not self.cond_stage_trainable
+        ), "trainable cond stages not yet supported for upscaling-ft"
+        z, c, x, xrec, xc = super().get_input(
+            batch,
+            self.first_stage_key,
+            return_first_stage_outputs=True,
+            force_c_encode=True,
+            return_original_cond=True,
+            bs=bs,
+        )
+
+        assert exists(self.concat_keys)
+        assert len(self.concat_keys) == 1
+        # optionally make spatial noise_level here
+        c_cat = list()
+        noise_level = None
+        for ck in self.concat_keys:
+            cc = batch[ck]
+            cc = rearrange(cc, "b h w c -> b c h w")
+            if exists(self.reshuffle_patch_size):
+                assert isinstance(self.reshuffle_patch_size, int)
+                cc = rearrange(
+                    cc,
+                    "b c (p1 h) (p2 w) -> b (p1 p2 c) h w",
+                    p1=self.reshuffle_patch_size,
+                    p2=self.reshuffle_patch_size,
+                )
+            if bs is not None:
+                cc = cc[:bs]
+                cc = cc.to(self.device)
+            if exists(self.low_scale_model) and ck == self.low_scale_key:
+                cc, noise_level = self.low_scale_model(cc)
+            c_cat.append(cc)
+        c_cat = torch.cat(c_cat, dim=1)
+        if exists(noise_level):
+            all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
+        else:
+            all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
+        if return_first_stage_outputs:
+            return z, all_conds, x, xrec, xc
+        return z, all_conds
+
+    @torch.no_grad()
+    def log_images(self, *args, **kwargs):
+        log = super().log_images(*args, **kwargs)
+        log["lr"] = rearrange(args[0]["lr"], "b h w c -> b c h w")
+        return log
diff --git a/iopaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py b/iopaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py
new file mode 100644
index 0000000000000000000000000000000000000000..095e5ba3ce0b1aa7f4b3f1e2e5d8fff7cfe6dc8c
--- /dev/null
+++ b/iopaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py
@@ -0,0 +1,1154 @@
+import torch
+import torch.nn.functional as F
+import math
+from tqdm import tqdm
+
+
+class NoiseScheduleVP:
+    def __init__(
+            self,
+            schedule='discrete',
+            betas=None,
+            alphas_cumprod=None,
+            continuous_beta_0=0.1,
+            continuous_beta_1=20.,
+    ):
+        """Create a wrapper class for the forward SDE (VP type).
+        ***
+        Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
+                We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
+        ***
+        The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
+        We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
+        Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
+            log_alpha_t = self.marginal_log_mean_coeff(t)
+            sigma_t = self.marginal_std(t)
+            lambda_t = self.marginal_lambda(t)
+        Moreover, as lambda(t) is an invertible function, we also support its inverse function:
+            t = self.inverse_lambda(lambda_t)
+        ===============================================================
+        We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
+        1. For discrete-time DPMs:
+            For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
+                t_i = (i + 1) / N
+            e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
+            We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
+            Args:
+                betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
+                alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
+            Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
+            **Important**:  Please pay special attention for the args for `alphas_cumprod`:
+                The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
+                    q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
+                Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
+                    alpha_{t_n} = \sqrt{\hat{alpha_n}},
+                and
+                    log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
+        2. For continuous-time DPMs:
+            We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
+            schedule are the default settings in DDPM and improved-DDPM:
+            Args:
+                beta_min: A `float` number. The smallest beta for the linear schedule.
+                beta_max: A `float` number. The largest beta for the linear schedule.
+                cosine_s: A `float` number. The hyperparameter in the cosine schedule.
+                cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
+                T: A `float` number. The ending time of the forward process.
+        ===============================================================
+        Args:
+            schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
+                    'linear' or 'cosine' for continuous-time DPMs.
+        Returns:
+            A wrapper object of the forward SDE (VP type).
+
+        ===============================================================
+        Example:
+        # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
+        >>> ns = NoiseScheduleVP('discrete', betas=betas)
+        # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
+        >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
+        # For continuous-time DPMs (VPSDE), linear schedule:
+        >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
+        """
+
+        if schedule not in ['discrete', 'linear', 'cosine']:
+            raise ValueError(
+                "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
+                    schedule))
+
+        self.schedule = schedule
+        if schedule == 'discrete':
+            if betas is not None:
+                log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
+            else:
+                assert alphas_cumprod is not None
+                log_alphas = 0.5 * torch.log(alphas_cumprod)
+            self.total_N = len(log_alphas)
+            self.T = 1.
+            self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
+            self.log_alpha_array = log_alphas.reshape((1, -1,))
+        else:
+            self.total_N = 1000
+            self.beta_0 = continuous_beta_0
+            self.beta_1 = continuous_beta_1
+            self.cosine_s = 0.008
+            self.cosine_beta_max = 999.
+            self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
+                        1. + self.cosine_s) / math.pi - self.cosine_s
+            self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
+            self.schedule = schedule
+            if schedule == 'cosine':
+                # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
+                # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
+                self.T = 0.9946
+            else:
+                self.T = 1.
+
+    def marginal_log_mean_coeff(self, t):
+        """
+        Compute log(alpha_t) of a given continuous-time label t in [0, T].
+        """
+        if self.schedule == 'discrete':
+            return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
+                                  self.log_alpha_array.to(t.device)).reshape((-1))
+        elif self.schedule == 'linear':
+            return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
+        elif self.schedule == 'cosine':
+            log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
+            log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
+            return log_alpha_t
+
+    def marginal_alpha(self, t):
+        """
+        Compute alpha_t of a given continuous-time label t in [0, T].
+        """
+        return torch.exp(self.marginal_log_mean_coeff(t))
+
+    def marginal_std(self, t):
+        """
+        Compute sigma_t of a given continuous-time label t in [0, T].
+        """
+        return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
+
+    def marginal_lambda(self, t):
+        """
+        Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
+        """
+        log_mean_coeff = self.marginal_log_mean_coeff(t)
+        log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
+        return log_mean_coeff - log_std
+
+    def inverse_lambda(self, lamb):
+        """
+        Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
+        """
+        if self.schedule == 'linear':
+            tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+            Delta = self.beta_0 ** 2 + tmp
+            return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
+        elif self.schedule == 'discrete':
+            log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
+            t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
+                               torch.flip(self.t_array.to(lamb.device), [1]))
+            return t.reshape((-1,))
+        else:
+            log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+            t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
+                        1. + self.cosine_s) / math.pi - self.cosine_s
+            t = t_fn(log_alpha)
+            return t
+
+
+def model_wrapper(
+        model,
+        noise_schedule,
+        model_type="noise",
+        model_kwargs={},
+        guidance_type="uncond",
+        condition=None,
+        unconditional_condition=None,
+        guidance_scale=1.,
+        classifier_fn=None,
+        classifier_kwargs={},
+):
+    """Create a wrapper function for the noise prediction model.
+    DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
+    firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
+    We support four types of the diffusion model by setting `model_type`:
+        1. "noise": noise prediction model. (Trained by predicting noise).
+        2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
+        3. "v": velocity prediction model. (Trained by predicting the velocity).
+            The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
+            [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
+                arXiv preprint arXiv:2202.00512 (2022).
+            [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
+                arXiv preprint arXiv:2210.02303 (2022).
+
+        4. "score": marginal score function. (Trained by denoising score matching).
+            Note that the score function and the noise prediction model follows a simple relationship:
+            ```
+                noise(x_t, t) = -sigma_t * score(x_t, t)
+            ```
+    We support three types of guided sampling by DPMs by setting `guidance_type`:
+        1. "uncond": unconditional sampling by DPMs.
+            The input `model` has the following format:
+            ``
+                model(x, t_input, **model_kwargs) -> noise | x_start | v | score
+            ``
+        2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
+            The input `model` has the following format:
+            ``
+                model(x, t_input, **model_kwargs) -> noise | x_start | v | score
+            ``
+            The input `classifier_fn` has the following format:
+            ``
+                classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
+            ``
+            [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
+                in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
+        3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
+            The input `model` has the following format:
+            ``
+                model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
+            ``
+            And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
+            [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
+                arXiv preprint arXiv:2207.12598 (2022).
+
+    The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
+    or continuous-time labels (i.e. epsilon to T).
+    We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
+    ``
+        def model_fn(x, t_continuous) -> noise:
+            t_input = get_model_input_time(t_continuous)
+            return noise_pred(model, x, t_input, **model_kwargs)
+    ``
+    where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
+    ===============================================================
+    Args:
+        model: A diffusion model with the corresponding format described above.
+        noise_schedule: A noise schedule object, such as NoiseScheduleVP.
+        model_type: A `str`. The parameterization type of the diffusion model.
+                    "noise" or "x_start" or "v" or "score".
+        model_kwargs: A `dict`. A dict for the other inputs of the model function.
+        guidance_type: A `str`. The type of the guidance for sampling.
+                    "uncond" or "classifier" or "classifier-free".
+        condition: A pytorch tensor. The condition for the guided sampling.
+                    Only used for "classifier" or "classifier-free" guidance type.
+        unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
+                    Only used for "classifier-free" guidance type.
+        guidance_scale: A `float`. The scale for the guided sampling.
+        classifier_fn: A classifier function. Only used for the classifier guidance.
+        classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
+    Returns:
+        A noise prediction model that accepts the noised data and the continuous time as the inputs.
+    """
+
+    def get_model_input_time(t_continuous):
+        """
+        Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
+        For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
+        For continuous-time DPMs, we just use `t_continuous`.
+        """
+        if noise_schedule.schedule == 'discrete':
+            return (t_continuous - 1. / noise_schedule.total_N) * 1000.
+        else:
+            return t_continuous
+
+    def noise_pred_fn(x, t_continuous, cond=None):
+        if t_continuous.reshape((-1,)).shape[0] == 1:
+            t_continuous = t_continuous.expand((x.shape[0]))
+        t_input = get_model_input_time(t_continuous)
+        if cond is None:
+            output = model(x, t_input, **model_kwargs)
+        else:
+            output = model(x, t_input, cond, **model_kwargs)
+        if model_type == "noise":
+            return output
+        elif model_type == "x_start":
+            alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+            dims = x.dim()
+            return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
+        elif model_type == "v":
+            alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+            dims = x.dim()
+            return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
+        elif model_type == "score":
+            sigma_t = noise_schedule.marginal_std(t_continuous)
+            dims = x.dim()
+            return -expand_dims(sigma_t, dims) * output
+
+    def cond_grad_fn(x, t_input):
+        """
+        Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
+        """
+        with torch.enable_grad():
+            x_in = x.detach().requires_grad_(True)
+            log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
+            return torch.autograd.grad(log_prob.sum(), x_in)[0]
+
+    def model_fn(x, t_continuous):
+        """
+        The noise predicition model function that is used for DPM-Solver.
+        """
+        if t_continuous.reshape((-1,)).shape[0] == 1:
+            t_continuous = t_continuous.expand((x.shape[0]))
+        if guidance_type == "uncond":
+            return noise_pred_fn(x, t_continuous)
+        elif guidance_type == "classifier":
+            assert classifier_fn is not None
+            t_input = get_model_input_time(t_continuous)
+            cond_grad = cond_grad_fn(x, t_input)
+            sigma_t = noise_schedule.marginal_std(t_continuous)
+            noise = noise_pred_fn(x, t_continuous)
+            return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
+        elif guidance_type == "classifier-free":
+            if guidance_scale == 1. or unconditional_condition is None:
+                return noise_pred_fn(x, t_continuous, cond=condition)
+            else:
+                x_in = torch.cat([x] * 2)
+                t_in = torch.cat([t_continuous] * 2)
+                c_in = torch.cat([unconditional_condition, condition])
+                noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
+                return noise_uncond + guidance_scale * (noise - noise_uncond)
+
+    assert model_type in ["noise", "x_start", "v"]
+    assert guidance_type in ["uncond", "classifier", "classifier-free"]
+    return model_fn
+
+
+class DPM_Solver:
+    def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
+        """Construct a DPM-Solver.
+        We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
+        If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
+        If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
+            In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
+            The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
+        Args:
+            model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
+                ``
+                def model_fn(x, t_continuous):
+                    return noise
+                ``
+            noise_schedule: A noise schedule object, such as NoiseScheduleVP.
+            predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
+            thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
+            max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
+
+        [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
+        """
+        self.model = model_fn
+        self.noise_schedule = noise_schedule
+        self.predict_x0 = predict_x0
+        self.thresholding = thresholding
+        self.max_val = max_val
+
+    def noise_prediction_fn(self, x, t):
+        """
+        Return the noise prediction model.
+        """
+        return self.model(x, t)
+
+    def data_prediction_fn(self, x, t):
+        """
+        Return the data prediction model (with thresholding).
+        """
+        noise = self.noise_prediction_fn(x, t)
+        dims = x.dim()
+        alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
+        x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
+        if self.thresholding:
+            p = 0.995  # A hyperparameter in the paper of "Imagen" [1].
+            s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
+            s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
+            x0 = torch.clamp(x0, -s, s) / s
+        return x0
+
+    def model_fn(self, x, t):
+        """
+        Convert the model to the noise prediction model or the data prediction model.
+        """
+        if self.predict_x0:
+            return self.data_prediction_fn(x, t)
+        else:
+            return self.noise_prediction_fn(x, t)
+
+    def get_time_steps(self, skip_type, t_T, t_0, N, device):
+        """Compute the intermediate time steps for sampling.
+        Args:
+            skip_type: A `str`. The type for the spacing of the time steps. We support three types:
+                - 'logSNR': uniform logSNR for the time steps.
+                - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
+                - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
+            t_T: A `float`. The starting time of the sampling (default is T).
+            t_0: A `float`. The ending time of the sampling (default is epsilon).
+            N: A `int`. The total number of the spacing of the time steps.
+            device: A torch device.
+        Returns:
+            A pytorch tensor of the time steps, with the shape (N + 1,).
+        """
+        if skip_type == 'logSNR':
+            lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
+            lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
+            logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
+            return self.noise_schedule.inverse_lambda(logSNR_steps)
+        elif skip_type == 'time_uniform':
+            return torch.linspace(t_T, t_0, N + 1).to(device)
+        elif skip_type == 'time_quadratic':
+            t_order = 2
+            t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
+            return t
+        else:
+            raise ValueError(
+                "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
+
+    def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
+        """
+        Get the order of each step for sampling by the singlestep DPM-Solver.
+        We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
+        Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
+            - If order == 1:
+                We take `steps` of DPM-Solver-1 (i.e. DDIM).
+            - If order == 2:
+                - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
+                - If steps % 2 == 0, we use K steps of DPM-Solver-2.
+                - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
+            - If order == 3:
+                - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
+                - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
+                - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
+                - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
+        ============================================
+        Args:
+            order: A `int`. The max order for the solver (2 or 3).
+            steps: A `int`. The total number of function evaluations (NFE).
+            skip_type: A `str`. The type for the spacing of the time steps. We support three types:
+                - 'logSNR': uniform logSNR for the time steps.
+                - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
+                - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
+            t_T: A `float`. The starting time of the sampling (default is T).
+            t_0: A `float`. The ending time of the sampling (default is epsilon).
+            device: A torch device.
+        Returns:
+            orders: A list of the solver order of each step.
+        """
+        if order == 3:
+            K = steps // 3 + 1
+            if steps % 3 == 0:
+                orders = [3, ] * (K - 2) + [2, 1]
+            elif steps % 3 == 1:
+                orders = [3, ] * (K - 1) + [1]
+            else:
+                orders = [3, ] * (K - 1) + [2]
+        elif order == 2:
+            if steps % 2 == 0:
+                K = steps // 2
+                orders = [2, ] * K
+            else:
+                K = steps // 2 + 1
+                orders = [2, ] * (K - 1) + [1]
+        elif order == 1:
+            K = 1
+            orders = [1, ] * steps
+        else:
+            raise ValueError("'order' must be '1' or '2' or '3'.")
+        if skip_type == 'logSNR':
+            # To reproduce the results in DPM-Solver paper
+            timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
+        else:
+            timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
+                torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
+        return timesteps_outer, orders
+
+    def denoise_to_zero_fn(self, x, s):
+        """
+        Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
+        """
+        return self.data_prediction_fn(x, s)
+
+    def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
+        """
+        DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
+        Args:
+            x: A pytorch tensor. The initial value at time `s`.
+            s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
+            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+            model_s: A pytorch tensor. The model function evaluated at time `s`.
+                If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
+            return_intermediate: A `bool`. If true, also return the model value at time `s`.
+        Returns:
+            x_t: A pytorch tensor. The approximated solution at time `t`.
+        """
+        ns = self.noise_schedule
+        dims = x.dim()
+        lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
+        h = lambda_t - lambda_s
+        log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
+        sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
+        alpha_t = torch.exp(log_alpha_t)
+
+        if self.predict_x0:
+            phi_1 = torch.expm1(-h)
+            if model_s is None:
+                model_s = self.model_fn(x, s)
+            x_t = (
+                    expand_dims(sigma_t / sigma_s, dims) * x
+                    - expand_dims(alpha_t * phi_1, dims) * model_s
+            )
+            if return_intermediate:
+                return x_t, {'model_s': model_s}
+            else:
+                return x_t
+        else:
+            phi_1 = torch.expm1(h)
+            if model_s is None:
+                model_s = self.model_fn(x, s)
+            x_t = (
+                    expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+                    - expand_dims(sigma_t * phi_1, dims) * model_s
+            )
+            if return_intermediate:
+                return x_t, {'model_s': model_s}
+            else:
+                return x_t
+
+    def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
+                                            solver_type='dpm_solver'):
+        """
+        Singlestep solver DPM-Solver-2 from time `s` to time `t`.
+        Args:
+            x: A pytorch tensor. The initial value at time `s`.
+            s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
+            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+            r1: A `float`. The hyperparameter of the second-order solver.
+            model_s: A pytorch tensor. The model function evaluated at time `s`.
+                If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
+            return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
+            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+        Returns:
+            x_t: A pytorch tensor. The approximated solution at time `t`.
+        """
+        if solver_type not in ['dpm_solver', 'taylor']:
+            raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
+        if r1 is None:
+            r1 = 0.5
+        ns = self.noise_schedule
+        dims = x.dim()
+        lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
+        h = lambda_t - lambda_s
+        lambda_s1 = lambda_s + r1 * h
+        s1 = ns.inverse_lambda(lambda_s1)
+        log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
+            s1), ns.marginal_log_mean_coeff(t)
+        sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
+        alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
+
+        if self.predict_x0:
+            phi_11 = torch.expm1(-r1 * h)
+            phi_1 = torch.expm1(-h)
+
+            if model_s is None:
+                model_s = self.model_fn(x, s)
+            x_s1 = (
+                    expand_dims(sigma_s1 / sigma_s, dims) * x
+                    - expand_dims(alpha_s1 * phi_11, dims) * model_s
+            )
+            model_s1 = self.model_fn(x_s1, s1)
+            if solver_type == 'dpm_solver':
+                x_t = (
+                        expand_dims(sigma_t / sigma_s, dims) * x
+                        - expand_dims(alpha_t * phi_1, dims) * model_s
+                        - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
+                )
+            elif solver_type == 'taylor':
+                x_t = (
+                        expand_dims(sigma_t / sigma_s, dims) * x
+                        - expand_dims(alpha_t * phi_1, dims) * model_s
+                        + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
+                                    model_s1 - model_s)
+                )
+        else:
+            phi_11 = torch.expm1(r1 * h)
+            phi_1 = torch.expm1(h)
+
+            if model_s is None:
+                model_s = self.model_fn(x, s)
+            x_s1 = (
+                    expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
+                    - expand_dims(sigma_s1 * phi_11, dims) * model_s
+            )
+            model_s1 = self.model_fn(x_s1, s1)
+            if solver_type == 'dpm_solver':
+                x_t = (
+                        expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+                        - expand_dims(sigma_t * phi_1, dims) * model_s
+                        - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
+                )
+            elif solver_type == 'taylor':
+                x_t = (
+                        expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+                        - expand_dims(sigma_t * phi_1, dims) * model_s
+                        - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
+                )
+        if return_intermediate:
+            return x_t, {'model_s': model_s, 'model_s1': model_s1}
+        else:
+            return x_t
+
+    def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
+                                           return_intermediate=False, solver_type='dpm_solver'):
+        """
+        Singlestep solver DPM-Solver-3 from time `s` to time `t`.
+        Args:
+            x: A pytorch tensor. The initial value at time `s`.
+            s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
+            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+            r1: A `float`. The hyperparameter of the third-order solver.
+            r2: A `float`. The hyperparameter of the third-order solver.
+            model_s: A pytorch tensor. The model function evaluated at time `s`.
+                If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
+            model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
+                If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
+            return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
+            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+        Returns:
+            x_t: A pytorch tensor. The approximated solution at time `t`.
+        """
+        if solver_type not in ['dpm_solver', 'taylor']:
+            raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
+        if r1 is None:
+            r1 = 1. / 3.
+        if r2 is None:
+            r2 = 2. / 3.
+        ns = self.noise_schedule
+        dims = x.dim()
+        lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
+        h = lambda_t - lambda_s
+        lambda_s1 = lambda_s + r1 * h
+        lambda_s2 = lambda_s + r2 * h
+        s1 = ns.inverse_lambda(lambda_s1)
+        s2 = ns.inverse_lambda(lambda_s2)
+        log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
+            s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
+        sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
+            s2), ns.marginal_std(t)
+        alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
+
+        if self.predict_x0:
+            phi_11 = torch.expm1(-r1 * h)
+            phi_12 = torch.expm1(-r2 * h)
+            phi_1 = torch.expm1(-h)
+            phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
+            phi_2 = phi_1 / h + 1.
+            phi_3 = phi_2 / h - 0.5
+
+            if model_s is None:
+                model_s = self.model_fn(x, s)
+            if model_s1 is None:
+                x_s1 = (
+                        expand_dims(sigma_s1 / sigma_s, dims) * x
+                        - expand_dims(alpha_s1 * phi_11, dims) * model_s
+                )
+                model_s1 = self.model_fn(x_s1, s1)
+            x_s2 = (
+                    expand_dims(sigma_s2 / sigma_s, dims) * x
+                    - expand_dims(alpha_s2 * phi_12, dims) * model_s
+                    + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
+            )
+            model_s2 = self.model_fn(x_s2, s2)
+            if solver_type == 'dpm_solver':
+                x_t = (
+                        expand_dims(sigma_t / sigma_s, dims) * x
+                        - expand_dims(alpha_t * phi_1, dims) * model_s
+                        + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
+                )
+            elif solver_type == 'taylor':
+                D1_0 = (1. / r1) * (model_s1 - model_s)
+                D1_1 = (1. / r2) * (model_s2 - model_s)
+                D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
+                D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
+                x_t = (
+                        expand_dims(sigma_t / sigma_s, dims) * x
+                        - expand_dims(alpha_t * phi_1, dims) * model_s
+                        + expand_dims(alpha_t * phi_2, dims) * D1
+                        - expand_dims(alpha_t * phi_3, dims) * D2
+                )
+        else:
+            phi_11 = torch.expm1(r1 * h)
+            phi_12 = torch.expm1(r2 * h)
+            phi_1 = torch.expm1(h)
+            phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
+            phi_2 = phi_1 / h - 1.
+            phi_3 = phi_2 / h - 0.5
+
+            if model_s is None:
+                model_s = self.model_fn(x, s)
+            if model_s1 is None:
+                x_s1 = (
+                        expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
+                        - expand_dims(sigma_s1 * phi_11, dims) * model_s
+                )
+                model_s1 = self.model_fn(x_s1, s1)
+            x_s2 = (
+                    expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
+                    - expand_dims(sigma_s2 * phi_12, dims) * model_s
+                    - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
+            )
+            model_s2 = self.model_fn(x_s2, s2)
+            if solver_type == 'dpm_solver':
+                x_t = (
+                        expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+                        - expand_dims(sigma_t * phi_1, dims) * model_s
+                        - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
+                )
+            elif solver_type == 'taylor':
+                D1_0 = (1. / r1) * (model_s1 - model_s)
+                D1_1 = (1. / r2) * (model_s2 - model_s)
+                D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
+                D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
+                x_t = (
+                        expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
+                        - expand_dims(sigma_t * phi_1, dims) * model_s
+                        - expand_dims(sigma_t * phi_2, dims) * D1
+                        - expand_dims(sigma_t * phi_3, dims) * D2
+                )
+
+        if return_intermediate:
+            return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
+        else:
+            return x_t
+
+    def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
+        """
+        Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
+        Args:
+            x: A pytorch tensor. The initial value at time `s`.
+            model_prev_list: A list of pytorch tensor. The previous computed model values.
+            t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
+            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+        Returns:
+            x_t: A pytorch tensor. The approximated solution at time `t`.
+        """
+        if solver_type not in ['dpm_solver', 'taylor']:
+            raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
+        ns = self.noise_schedule
+        dims = x.dim()
+        model_prev_1, model_prev_0 = model_prev_list
+        t_prev_1, t_prev_0 = t_prev_list
+        lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
+            t_prev_0), ns.marginal_lambda(t)
+        log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+        sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+        alpha_t = torch.exp(log_alpha_t)
+
+        h_0 = lambda_prev_0 - lambda_prev_1
+        h = lambda_t - lambda_prev_0
+        r0 = h_0 / h
+        D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
+        if self.predict_x0:
+            if solver_type == 'dpm_solver':
+                x_t = (
+                        expand_dims(sigma_t / sigma_prev_0, dims) * x
+                        - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
+                        - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
+                )
+            elif solver_type == 'taylor':
+                x_t = (
+                        expand_dims(sigma_t / sigma_prev_0, dims) * x
+                        - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
+                        + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
+                )
+        else:
+            if solver_type == 'dpm_solver':
+                x_t = (
+                        expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
+                        - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
+                        - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
+                )
+            elif solver_type == 'taylor':
+                x_t = (
+                        expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
+                        - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
+                        - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
+                )
+        return x_t
+
+    def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
+        """
+        Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
+        Args:
+            x: A pytorch tensor. The initial value at time `s`.
+            model_prev_list: A list of pytorch tensor. The previous computed model values.
+            t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
+            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+        Returns:
+            x_t: A pytorch tensor. The approximated solution at time `t`.
+        """
+        ns = self.noise_schedule
+        dims = x.dim()
+        model_prev_2, model_prev_1, model_prev_0 = model_prev_list
+        t_prev_2, t_prev_1, t_prev_0 = t_prev_list
+        lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
+            t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
+        log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+        sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+        alpha_t = torch.exp(log_alpha_t)
+
+        h_1 = lambda_prev_1 - lambda_prev_2
+        h_0 = lambda_prev_0 - lambda_prev_1
+        h = lambda_t - lambda_prev_0
+        r0, r1 = h_0 / h, h_1 / h
+        D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
+        D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
+        D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
+        D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
+        if self.predict_x0:
+            x_t = (
+                    expand_dims(sigma_t / sigma_prev_0, dims) * x
+                    - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
+                    + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
+                    - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
+            )
+        else:
+            x_t = (
+                    expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
+                    - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
+                    - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
+                    - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
+            )
+        return x_t
+
+    def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
+                                     r2=None):
+        """
+        Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
+        Args:
+            x: A pytorch tensor. The initial value at time `s`.
+            s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
+            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+            order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
+            return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
+            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+            r1: A `float`. The hyperparameter of the second-order or third-order solver.
+            r2: A `float`. The hyperparameter of the third-order solver.
+        Returns:
+            x_t: A pytorch tensor. The approximated solution at time `t`.
+        """
+        if order == 1:
+            return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
+        elif order == 2:
+            return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
+                                                            solver_type=solver_type, r1=r1)
+        elif order == 3:
+            return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
+                                                           solver_type=solver_type, r1=r1, r2=r2)
+        else:
+            raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
+
+    def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
+        """
+        Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
+        Args:
+            x: A pytorch tensor. The initial value at time `s`.
+            model_prev_list: A list of pytorch tensor. The previous computed model values.
+            t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
+            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
+            order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
+            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+        Returns:
+            x_t: A pytorch tensor. The approximated solution at time `t`.
+        """
+        if order == 1:
+            return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
+        elif order == 2:
+            return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
+        elif order == 3:
+            return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
+        else:
+            raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
+
+    def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
+                            solver_type='dpm_solver'):
+        """
+        The adaptive step size solver based on singlestep DPM-Solver.
+        Args:
+            x: A pytorch tensor. The initial value at time `t_T`.
+            order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
+            t_T: A `float`. The starting time of the sampling (default is T).
+            t_0: A `float`. The ending time of the sampling (default is epsilon).
+            h_init: A `float`. The initial step size (for logSNR).
+            atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
+            rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
+            theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
+            t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
+                current time and `t_0` is less than `t_err`. The default setting is 1e-5.
+            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
+                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
+        Returns:
+            x_0: A pytorch tensor. The approximated solution at time `t_0`.
+        [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
+        """
+        ns = self.noise_schedule
+        s = t_T * torch.ones((x.shape[0],)).to(x)
+        lambda_s = ns.marginal_lambda(s)
+        lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
+        h = h_init * torch.ones_like(s).to(x)
+        x_prev = x
+        nfe = 0
+        if order == 2:
+            r1 = 0.5
+            lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
+            higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
+                                                                                               solver_type=solver_type,
+                                                                                               **kwargs)
+        elif order == 3:
+            r1, r2 = 1. / 3., 2. / 3.
+            lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
+                                                                                    return_intermediate=True,
+                                                                                    solver_type=solver_type)
+            higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
+                                                                                              solver_type=solver_type,
+                                                                                              **kwargs)
+        else:
+            raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
+        while torch.abs((s - t_0)).mean() > t_err:
+            t = ns.inverse_lambda(lambda_s + h)
+            x_lower, lower_noise_kwargs = lower_update(x, s, t)
+            x_higher = higher_update(x, s, t, **lower_noise_kwargs)
+            delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
+            norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
+            E = norm_fn((x_higher - x_lower) / delta).max()
+            if torch.all(E <= 1.):
+                x = x_higher
+                s = t
+                x_prev = x_lower
+                lambda_s = ns.marginal_lambda(s)
+            h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
+            nfe += order
+        print('adaptive solver nfe', nfe)
+        return x
+
+    def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
+               method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
+               atol=0.0078, rtol=0.05,
+               ):
+        """
+        Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
+        =====================================================
+        We support the following algorithms for both noise prediction model and data prediction model:
+            - 'singlestep':
+                Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
+                We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
+                The total number of function evaluations (NFE) == `steps`.
+                Given a fixed NFE == `steps`, the sampling procedure is:
+                    - If `order` == 1:
+                        - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
+                    - If `order` == 2:
+                        - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
+                        - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
+                        - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
+                    - If `order` == 3:
+                        - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
+                        - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
+                        - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
+                        - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
+            - 'multistep':
+                Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
+                We initialize the first `order` values by lower order multistep solvers.
+                Given a fixed NFE == `steps`, the sampling procedure is:
+                    Denote K = steps.
+                    - If `order` == 1:
+                        - We use K steps of DPM-Solver-1 (i.e. DDIM).
+                    - If `order` == 2:
+                        - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
+                    - If `order` == 3:
+                        - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
+            - 'singlestep_fixed':
+                Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
+                We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
+            - 'adaptive':
+                Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
+                We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
+                You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
+                (NFE) and the sample quality.
+                    - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
+                    - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
+        =====================================================
+        Some advices for choosing the algorithm:
+            - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
+                Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
+                e.g.
+                    >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
+                    >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
+                            skip_type='time_uniform', method='singlestep')
+            - For **guided sampling with large guidance scale** by DPMs:
+                Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
+                e.g.
+                    >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
+                    >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
+                            skip_type='time_uniform', method='multistep')
+        We support three types of `skip_type`:
+            - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
+            - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
+            - 'time_quadratic': quadratic time for the time steps.
+        =====================================================
+        Args:
+            x: A pytorch tensor. The initial value at time `t_start`
+                e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
+            steps: A `int`. The total number of function evaluations (NFE).
+            t_start: A `float`. The starting time of the sampling.
+                If `T` is None, we use self.noise_schedule.T (default is 1.0).
+            t_end: A `float`. The ending time of the sampling.
+                If `t_end` is None, we use 1. / self.noise_schedule.total_N.
+                e.g. if total_N == 1000, we have `t_end` == 1e-3.
+                For discrete-time DPMs:
+                    - We recommend `t_end` == 1. / self.noise_schedule.total_N.
+                For continuous-time DPMs:
+                    - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
+            order: A `int`. The order of DPM-Solver.
+            skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
+            method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
+            denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
+                Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
+                This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
+                score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
+                for diffusion models sampling by diffusion SDEs for low-resolutional images
+                (such as CIFAR-10). However, we observed that such trick does not matter for
+                high-resolutional images. As it needs an additional NFE, we do not recommend
+                it for high-resolutional images.
+            lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
+                Only valid for `method=multistep` and `steps < 15`. We empirically find that
+                this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
+                (especially for steps <= 10). So we recommend to set it to be `True`.
+            solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
+            atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
+            rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
+        Returns:
+            x_end: A pytorch tensor. The approximated solution at time `t_end`.
+        """
+        t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
+        t_T = self.noise_schedule.T if t_start is None else t_start
+        device = x.device
+        if method == 'adaptive':
+            with torch.no_grad():
+                x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
+                                             solver_type=solver_type)
+        elif method == 'multistep':
+            assert steps >= order
+            timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
+            assert timesteps.shape[0] - 1 == steps
+            with torch.no_grad():
+                vec_t = timesteps[0].expand((x.shape[0]))
+                model_prev_list = [self.model_fn(x, vec_t)]
+                t_prev_list = [vec_t]
+                # Init the first `order` values by lower order multistep DPM-Solver.
+                for init_order in tqdm(range(1, order), desc="DPM init order"):
+                    vec_t = timesteps[init_order].expand(x.shape[0])
+                    x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
+                                                         solver_type=solver_type)
+                    model_prev_list.append(self.model_fn(x, vec_t))
+                    t_prev_list.append(vec_t)
+                # Compute the remaining values by `order`-th order multistep DPM-Solver.
+                for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
+                    vec_t = timesteps[step].expand(x.shape[0])
+                    if lower_order_final and steps < 15:
+                        step_order = min(order, steps + 1 - step)
+                    else:
+                        step_order = order
+                    x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
+                                                         solver_type=solver_type)
+                    for i in range(order - 1):
+                        t_prev_list[i] = t_prev_list[i + 1]
+                        model_prev_list[i] = model_prev_list[i + 1]
+                    t_prev_list[-1] = vec_t
+                    # We do not need to evaluate the final model value.
+                    if step < steps:
+                        model_prev_list[-1] = self.model_fn(x, vec_t)
+        elif method in ['singlestep', 'singlestep_fixed']:
+            if method == 'singlestep':
+                timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
+                                                                                              skip_type=skip_type,
+                                                                                              t_T=t_T, t_0=t_0,
+                                                                                              device=device)
+            elif method == 'singlestep_fixed':
+                K = steps // order
+                orders = [order, ] * K
+                timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
+            for i, order in enumerate(orders):
+                t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
+                timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
+                                                      N=order, device=device)
+                lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
+                vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
+                h = lambda_inner[-1] - lambda_inner[0]
+                r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
+                r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
+                x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
+        if denoise_to_zero:
+            x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
+        return x
+
+
+#############################################################
+# other utility functions
+#############################################################
+
+def interpolate_fn(x, xp, yp):
+    """
+    A piecewise linear function y = f(x), using xp and yp as keypoints.
+    We implement f(x) in a differentiable way (i.e. applicable for autograd).
+    The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
+    Args:
+        x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
+        xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
+        yp: PyTorch tensor with shape [C, K].
+    Returns:
+        The function values f(x), with shape [N, C].
+    """
+    N, K = x.shape[0], xp.shape[1]
+    all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
+    sorted_all_x, x_indices = torch.sort(all_x, dim=2)
+    x_idx = torch.argmin(x_indices, dim=2)
+    cand_start_idx = x_idx - 1
+    start_idx = torch.where(
+        torch.eq(x_idx, 0),
+        torch.tensor(1, device=x.device),
+        torch.where(
+            torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+        ),
+    )
+    end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
+    start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
+    end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
+    start_idx2 = torch.where(
+        torch.eq(x_idx, 0),
+        torch.tensor(0, device=x.device),
+        torch.where(
+            torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+        ),
+    )
+    y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
+    start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
+    end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
+    cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
+    return cand
+
+
+def expand_dims(v, dims):
+    """
+    Expand the tensor `v` to the dim `dims`.
+    Args:
+        `v`: a PyTorch tensor with shape [N].
+        `dim`: a `int`.
+    Returns:
+        a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
+    """
+    return v[(...,) + (None,) * (dims - 1)]
\ No newline at end of file
diff --git a/iopaint/model/anytext/ldm/modules/diffusionmodules/model.py b/iopaint/model/anytext/ldm/modules/diffusionmodules/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..3472824236b8fb6d8e3d08001288603ee701a62f
--- /dev/null
+++ b/iopaint/model/anytext/ldm/modules/diffusionmodules/model.py
@@ -0,0 +1,973 @@
+# pytorch_diffusion + derived encoder decoder
+import math
+
+import numpy as np
+import torch
+import torch.nn as nn
+
+
+def get_timestep_embedding(timesteps, embedding_dim):
+    """
+    This matches the implementation in Denoising Diffusion Probabilistic Models:
+    From Fairseq.
+    Build sinusoidal embeddings.
+    This matches the implementation in tensor2tensor, but differs slightly
+    from the description in Section 3.5 of "Attention Is All You Need".
+    """
+    assert len(timesteps.shape) == 1
+
+    half_dim = embedding_dim // 2
+    emb = math.log(10000) / (half_dim - 1)
+    emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
+    emb = emb.to(device=timesteps.device)
+    emb = timesteps.float()[:, None] * emb[None, :]
+    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
+    if embedding_dim % 2 == 1:  # zero pad
+        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
+    return emb
+
+
+def nonlinearity(x):
+    # swish
+    return x * torch.sigmoid(x)
+
+
+def Normalize(in_channels, num_groups=32):
+    return torch.nn.GroupNorm(
+        num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
+    )
+
+
+class Upsample(nn.Module):
+    def __init__(self, in_channels, with_conv):
+        super().__init__()
+        self.with_conv = with_conv
+        if self.with_conv:
+            self.conv = torch.nn.Conv2d(
+                in_channels, in_channels, kernel_size=3, stride=1, padding=1
+            )
+
+    def forward(self, x):
+        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
+        if self.with_conv:
+            x = self.conv(x)
+        return x
+
+
+class Downsample(nn.Module):
+    def __init__(self, in_channels, with_conv):
+        super().__init__()
+        self.with_conv = with_conv
+        if self.with_conv:
+            # no asymmetric padding in torch conv, must do it ourselves
+            self.conv = torch.nn.Conv2d(
+                in_channels, in_channels, kernel_size=3, stride=2, padding=0
+            )
+
+    def forward(self, x):
+        if self.with_conv:
+            pad = (0, 1, 0, 1)
+            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
+            x = self.conv(x)
+        else:
+            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
+        return x
+
+
+class ResnetBlock(nn.Module):
+    def __init__(
+        self,
+        *,
+        in_channels,
+        out_channels=None,
+        conv_shortcut=False,
+        dropout,
+        temb_channels=512,
+    ):
+        super().__init__()
+        self.in_channels = in_channels
+        out_channels = in_channels if out_channels is None else out_channels
+        self.out_channels = out_channels
+        self.use_conv_shortcut = conv_shortcut
+
+        self.norm1 = Normalize(in_channels)
+        self.conv1 = torch.nn.Conv2d(
+            in_channels, out_channels, kernel_size=3, stride=1, padding=1
+        )
+        if temb_channels > 0:
+            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
+        self.norm2 = Normalize(out_channels)
+        self.dropout = torch.nn.Dropout(dropout)
+        self.conv2 = torch.nn.Conv2d(
+            out_channels, out_channels, kernel_size=3, stride=1, padding=1
+        )
+        if self.in_channels != self.out_channels:
+            if self.use_conv_shortcut:
+                self.conv_shortcut = torch.nn.Conv2d(
+                    in_channels, out_channels, kernel_size=3, stride=1, padding=1
+                )
+            else:
+                self.nin_shortcut = torch.nn.Conv2d(
+                    in_channels, out_channels, kernel_size=1, stride=1, padding=0
+                )
+
+    def forward(self, x, temb):
+        h = x
+        h = self.norm1(h)
+        h = nonlinearity(h)
+        h = self.conv1(h)
+
+        if temb is not None:
+            h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
+
+        h = self.norm2(h)
+        h = nonlinearity(h)
+        h = self.dropout(h)
+        h = self.conv2(h)
+
+        if self.in_channels != self.out_channels:
+            if self.use_conv_shortcut:
+                x = self.conv_shortcut(x)
+            else:
+                x = self.nin_shortcut(x)
+
+        return x + h
+
+
+class AttnBlock(nn.Module):
+    def __init__(self, in_channels):
+        super().__init__()
+        self.in_channels = in_channels
+
+        self.norm = Normalize(in_channels)
+        self.q = torch.nn.Conv2d(
+            in_channels, in_channels, kernel_size=1, stride=1, padding=0
+        )
+        self.k = torch.nn.Conv2d(
+            in_channels, in_channels, kernel_size=1, stride=1, padding=0
+        )
+        self.v = torch.nn.Conv2d(
+            in_channels, in_channels, kernel_size=1, stride=1, padding=0
+        )
+        self.proj_out = torch.nn.Conv2d(
+            in_channels, in_channels, kernel_size=1, stride=1, padding=0
+        )
+
+    def forward(self, x):
+        h_ = x
+        h_ = self.norm(h_)
+        q = self.q(h_)
+        k = self.k(h_)
+        v = self.v(h_)
+
+        # compute attention
+        b, c, h, w = q.shape
+        q = q.reshape(b, c, h * w)
+        q = q.permute(0, 2, 1)  # b,hw,c
+        k = k.reshape(b, c, h * w)  # b,c,hw
+        w_ = torch.bmm(q, k)  # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
+        w_ = w_ * (int(c) ** (-0.5))
+        w_ = torch.nn.functional.softmax(w_, dim=2)
+
+        # attend to values
+        v = v.reshape(b, c, h * w)
+        w_ = w_.permute(0, 2, 1)  # b,hw,hw (first hw of k, second of q)
+        h_ = torch.bmm(v, w_)  # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
+        h_ = h_.reshape(b, c, h, w)
+
+        h_ = self.proj_out(h_)
+
+        return x + h_
+
+
+class AttnBlock2_0(nn.Module):
+    def __init__(self, in_channels):
+        super().__init__()
+        self.in_channels = in_channels
+
+        self.norm = Normalize(in_channels)
+        self.q = torch.nn.Conv2d(
+            in_channels, in_channels, kernel_size=1, stride=1, padding=0
+        )
+        self.k = torch.nn.Conv2d(
+            in_channels, in_channels, kernel_size=1, stride=1, padding=0
+        )
+        self.v = torch.nn.Conv2d(
+            in_channels, in_channels, kernel_size=1, stride=1, padding=0
+        )
+        self.proj_out = torch.nn.Conv2d(
+            in_channels, in_channels, kernel_size=1, stride=1, padding=0
+        )
+
+    def forward(self, x):
+        h_ = x
+        h_ = self.norm(h_)
+        # output: [1, 512, 64, 64]
+        q = self.q(h_)
+        k = self.k(h_)
+        v = self.v(h_)
+
+        # compute attention
+        b, c, h, w = q.shape
+
+        # q = q.reshape(b, c, h * w).transpose()
+        # q = q.permute(0, 2, 1)  # b,hw,c
+        # k = k.reshape(b, c, h * w)  # b,c,hw
+        q = q.transpose(1, 2)
+        k = k.transpose(1, 2)
+        v = v.transpose(1, 2)
+        # (batch, num_heads, seq_len, head_dim)
+        hidden_states = torch.nn.functional.scaled_dot_product_attention(
+            q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False
+        )
+        hidden_states = hidden_states.transpose(1, 2)
+        hidden_states = hidden_states.to(q.dtype)
+
+        h_ = self.proj_out(hidden_states)
+
+        return x + h_
+
+
+def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
+    assert attn_type in [
+        "vanilla",
+        "vanilla-xformers",
+        "memory-efficient-cross-attn",
+        "linear",
+        "none",
+    ], f"attn_type {attn_type} unknown"
+    assert attn_kwargs is None
+    if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
+        # print(f"Using torch.nn.functional.scaled_dot_product_attention")
+        return AttnBlock2_0(in_channels)
+    return AttnBlock(in_channels)
+
+
+class Model(nn.Module):
+    def __init__(
+        self,
+        *,
+        ch,
+        out_ch,
+        ch_mult=(1, 2, 4, 8),
+        num_res_blocks,
+        attn_resolutions,
+        dropout=0.0,
+        resamp_with_conv=True,
+        in_channels,
+        resolution,
+        use_timestep=True,
+        use_linear_attn=False,
+        attn_type="vanilla",
+    ):
+        super().__init__()
+        if use_linear_attn:
+            attn_type = "linear"
+        self.ch = ch
+        self.temb_ch = self.ch * 4
+        self.num_resolutions = len(ch_mult)
+        self.num_res_blocks = num_res_blocks
+        self.resolution = resolution
+        self.in_channels = in_channels
+
+        self.use_timestep = use_timestep
+        if self.use_timestep:
+            # timestep embedding
+            self.temb = nn.Module()
+            self.temb.dense = nn.ModuleList(
+                [
+                    torch.nn.Linear(self.ch, self.temb_ch),
+                    torch.nn.Linear(self.temb_ch, self.temb_ch),
+                ]
+            )
+
+        # downsampling
+        self.conv_in = torch.nn.Conv2d(
+            in_channels, self.ch, kernel_size=3, stride=1, padding=1
+        )
+
+        curr_res = resolution
+        in_ch_mult = (1,) + tuple(ch_mult)
+        self.down = nn.ModuleList()
+        for i_level in range(self.num_resolutions):
+            block = nn.ModuleList()
+            attn = nn.ModuleList()
+            block_in = ch * in_ch_mult[i_level]
+            block_out = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks):
+                block.append(
+                    ResnetBlock(
+                        in_channels=block_in,
+                        out_channels=block_out,
+                        temb_channels=self.temb_ch,
+                        dropout=dropout,
+                    )
+                )
+                block_in = block_out
+                if curr_res in attn_resolutions:
+                    attn.append(make_attn(block_in, attn_type=attn_type))
+            down = nn.Module()
+            down.block = block
+            down.attn = attn
+            if i_level != self.num_resolutions - 1:
+                down.downsample = Downsample(block_in, resamp_with_conv)
+                curr_res = curr_res // 2
+            self.down.append(down)
+
+        # middle
+        self.mid = nn.Module()
+        self.mid.block_1 = ResnetBlock(
+            in_channels=block_in,
+            out_channels=block_in,
+            temb_channels=self.temb_ch,
+            dropout=dropout,
+        )
+        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+        self.mid.block_2 = ResnetBlock(
+            in_channels=block_in,
+            out_channels=block_in,
+            temb_channels=self.temb_ch,
+            dropout=dropout,
+        )
+
+        # upsampling
+        self.up = nn.ModuleList()
+        for i_level in reversed(range(self.num_resolutions)):
+            block = nn.ModuleList()
+            attn = nn.ModuleList()
+            block_out = ch * ch_mult[i_level]
+            skip_in = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks + 1):
+                if i_block == self.num_res_blocks:
+                    skip_in = ch * in_ch_mult[i_level]
+                block.append(
+                    ResnetBlock(
+                        in_channels=block_in + skip_in,
+                        out_channels=block_out,
+                        temb_channels=self.temb_ch,
+                        dropout=dropout,
+                    )
+                )
+                block_in = block_out
+                if curr_res in attn_resolutions:
+                    attn.append(make_attn(block_in, attn_type=attn_type))
+            up = nn.Module()
+            up.block = block
+            up.attn = attn
+            if i_level != 0:
+                up.upsample = Upsample(block_in, resamp_with_conv)
+                curr_res = curr_res * 2
+            self.up.insert(0, up)  # prepend to get consistent order
+
+        # end
+        self.norm_out = Normalize(block_in)
+        self.conv_out = torch.nn.Conv2d(
+            block_in, out_ch, kernel_size=3, stride=1, padding=1
+        )
+
+    def forward(self, x, t=None, context=None):
+        # assert x.shape[2] == x.shape[3] == self.resolution
+        if context is not None:
+            # assume aligned context, cat along channel axis
+            x = torch.cat((x, context), dim=1)
+        if self.use_timestep:
+            # timestep embedding
+            assert t is not None
+            temb = get_timestep_embedding(t, self.ch)
+            temb = self.temb.dense[0](temb)
+            temb = nonlinearity(temb)
+            temb = self.temb.dense[1](temb)
+        else:
+            temb = None
+
+        # downsampling
+        hs = [self.conv_in(x)]
+        for i_level in range(self.num_resolutions):
+            for i_block in range(self.num_res_blocks):
+                h = self.down[i_level].block[i_block](hs[-1], temb)
+                if len(self.down[i_level].attn) > 0:
+                    h = self.down[i_level].attn[i_block](h)
+                hs.append(h)
+            if i_level != self.num_resolutions - 1:
+                hs.append(self.down[i_level].downsample(hs[-1]))
+
+        # middle
+        h = hs[-1]
+        h = self.mid.block_1(h, temb)
+        h = self.mid.attn_1(h)
+        h = self.mid.block_2(h, temb)
+
+        # upsampling
+        for i_level in reversed(range(self.num_resolutions)):
+            for i_block in range(self.num_res_blocks + 1):
+                h = self.up[i_level].block[i_block](
+                    torch.cat([h, hs.pop()], dim=1), temb
+                )
+                if len(self.up[i_level].attn) > 0:
+                    h = self.up[i_level].attn[i_block](h)
+            if i_level != 0:
+                h = self.up[i_level].upsample(h)
+
+        # end
+        h = self.norm_out(h)
+        h = nonlinearity(h)
+        h = self.conv_out(h)
+        return h
+
+    def get_last_layer(self):
+        return self.conv_out.weight
+
+
+class Encoder(nn.Module):
+    def __init__(
+        self,
+        *,
+        ch,
+        out_ch,
+        ch_mult=(1, 2, 4, 8),
+        num_res_blocks,
+        attn_resolutions,
+        dropout=0.0,
+        resamp_with_conv=True,
+        in_channels,
+        resolution,
+        z_channels,
+        double_z=True,
+        use_linear_attn=False,
+        attn_type="vanilla",
+        **ignore_kwargs,
+    ):
+        super().__init__()
+        if use_linear_attn:
+            attn_type = "linear"
+        self.ch = ch
+        self.temb_ch = 0
+        self.num_resolutions = len(ch_mult)
+        self.num_res_blocks = num_res_blocks
+        self.resolution = resolution
+        self.in_channels = in_channels
+
+        # downsampling
+        self.conv_in = torch.nn.Conv2d(
+            in_channels, self.ch, kernel_size=3, stride=1, padding=1
+        )
+
+        curr_res = resolution
+        in_ch_mult = (1,) + tuple(ch_mult)
+        self.in_ch_mult = in_ch_mult
+        self.down = nn.ModuleList()
+        for i_level in range(self.num_resolutions):
+            block = nn.ModuleList()
+            attn = nn.ModuleList()
+            block_in = ch * in_ch_mult[i_level]
+            block_out = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks):
+                block.append(
+                    ResnetBlock(
+                        in_channels=block_in,
+                        out_channels=block_out,
+                        temb_channels=self.temb_ch,
+                        dropout=dropout,
+                    )
+                )
+                block_in = block_out
+                if curr_res in attn_resolutions:
+                    attn.append(make_attn(block_in, attn_type=attn_type))
+            down = nn.Module()
+            down.block = block
+            down.attn = attn
+            if i_level != self.num_resolutions - 1:
+                down.downsample = Downsample(block_in, resamp_with_conv)
+                curr_res = curr_res // 2
+            self.down.append(down)
+
+        # middle
+        self.mid = nn.Module()
+        self.mid.block_1 = ResnetBlock(
+            in_channels=block_in,
+            out_channels=block_in,
+            temb_channels=self.temb_ch,
+            dropout=dropout,
+        )
+        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+        self.mid.block_2 = ResnetBlock(
+            in_channels=block_in,
+            out_channels=block_in,
+            temb_channels=self.temb_ch,
+            dropout=dropout,
+        )
+
+        # end
+        self.norm_out = Normalize(block_in)
+        self.conv_out = torch.nn.Conv2d(
+            block_in,
+            2 * z_channels if double_z else z_channels,
+            kernel_size=3,
+            stride=1,
+            padding=1,
+        )
+
+    def forward(self, x):
+        # timestep embedding
+        temb = None
+
+        # downsampling
+        hs = [self.conv_in(x)]
+        for i_level in range(self.num_resolutions):
+            for i_block in range(self.num_res_blocks):
+                h = self.down[i_level].block[i_block](hs[-1], temb)
+                if len(self.down[i_level].attn) > 0:
+                    h = self.down[i_level].attn[i_block](h)
+                hs.append(h)
+            if i_level != self.num_resolutions - 1:
+                hs.append(self.down[i_level].downsample(hs[-1]))
+
+        # middle
+        h = hs[-1]
+        h = self.mid.block_1(h, temb)
+        h = self.mid.attn_1(h)
+        h = self.mid.block_2(h, temb)
+
+        # end
+        h = self.norm_out(h)
+        h = nonlinearity(h)
+        h = self.conv_out(h)
+        return h
+
+
+class Decoder(nn.Module):
+    def __init__(
+        self,
+        *,
+        ch,
+        out_ch,
+        ch_mult=(1, 2, 4, 8),
+        num_res_blocks,
+        attn_resolutions,
+        dropout=0.0,
+        resamp_with_conv=True,
+        in_channels,
+        resolution,
+        z_channels,
+        give_pre_end=False,
+        tanh_out=False,
+        use_linear_attn=False,
+        attn_type="vanilla",
+        **ignorekwargs,
+    ):
+        super().__init__()
+        if use_linear_attn:
+            attn_type = "linear"
+        self.ch = ch
+        self.temb_ch = 0
+        self.num_resolutions = len(ch_mult)
+        self.num_res_blocks = num_res_blocks
+        self.resolution = resolution
+        self.in_channels = in_channels
+        self.give_pre_end = give_pre_end
+        self.tanh_out = tanh_out
+
+        # compute in_ch_mult, block_in and curr_res at lowest res
+        in_ch_mult = (1,) + tuple(ch_mult)
+        block_in = ch * ch_mult[self.num_resolutions - 1]
+        curr_res = resolution // 2 ** (self.num_resolutions - 1)
+        self.z_shape = (1, z_channels, curr_res, curr_res)
+        print(
+            "Working with z of shape {} = {} dimensions.".format(
+                self.z_shape, np.prod(self.z_shape)
+            )
+        )
+
+        # z to block_in
+        self.conv_in = torch.nn.Conv2d(
+            z_channels, block_in, kernel_size=3, stride=1, padding=1
+        )
+
+        # middle
+        self.mid = nn.Module()
+        self.mid.block_1 = ResnetBlock(
+            in_channels=block_in,
+            out_channels=block_in,
+            temb_channels=self.temb_ch,
+            dropout=dropout,
+        )
+        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+        self.mid.block_2 = ResnetBlock(
+            in_channels=block_in,
+            out_channels=block_in,
+            temb_channels=self.temb_ch,
+            dropout=dropout,
+        )
+
+        # upsampling
+        self.up = nn.ModuleList()
+        for i_level in reversed(range(self.num_resolutions)):
+            block = nn.ModuleList()
+            attn = nn.ModuleList()
+            block_out = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks + 1):
+                block.append(
+                    ResnetBlock(
+                        in_channels=block_in,
+                        out_channels=block_out,
+                        temb_channels=self.temb_ch,
+                        dropout=dropout,
+                    )
+                )
+                block_in = block_out
+                if curr_res in attn_resolutions:
+                    attn.append(make_attn(block_in, attn_type=attn_type))
+            up = nn.Module()
+            up.block = block
+            up.attn = attn
+            if i_level != 0:
+                up.upsample = Upsample(block_in, resamp_with_conv)
+                curr_res = curr_res * 2
+            self.up.insert(0, up)  # prepend to get consistent order
+
+        # end
+        self.norm_out = Normalize(block_in)
+        self.conv_out = torch.nn.Conv2d(
+            block_in, out_ch, kernel_size=3, stride=1, padding=1
+        )
+
+    def forward(self, z):
+        # assert z.shape[1:] == self.z_shape[1:]
+        self.last_z_shape = z.shape
+
+        # timestep embedding
+        temb = None
+
+        # z to block_in
+        h = self.conv_in(z)
+
+        # middle
+        h = self.mid.block_1(h, temb)
+        h = self.mid.attn_1(h)
+        h = self.mid.block_2(h, temb)
+
+        # upsampling
+        for i_level in reversed(range(self.num_resolutions)):
+            for i_block in range(self.num_res_blocks + 1):
+                h = self.up[i_level].block[i_block](h, temb)
+                if len(self.up[i_level].attn) > 0:
+                    h = self.up[i_level].attn[i_block](h)
+            if i_level != 0:
+                h = self.up[i_level].upsample(h)
+
+        # end
+        if self.give_pre_end:
+            return h
+
+        h = self.norm_out(h)
+        h = nonlinearity(h)
+        h = self.conv_out(h)
+        if self.tanh_out:
+            h = torch.tanh(h)
+        return h
+
+
+class SimpleDecoder(nn.Module):
+    def __init__(self, in_channels, out_channels, *args, **kwargs):
+        super().__init__()
+        self.model = nn.ModuleList(
+            [
+                nn.Conv2d(in_channels, in_channels, 1),
+                ResnetBlock(
+                    in_channels=in_channels,
+                    out_channels=2 * in_channels,
+                    temb_channels=0,
+                    dropout=0.0,
+                ),
+                ResnetBlock(
+                    in_channels=2 * in_channels,
+                    out_channels=4 * in_channels,
+                    temb_channels=0,
+                    dropout=0.0,
+                ),
+                ResnetBlock(
+                    in_channels=4 * in_channels,
+                    out_channels=2 * in_channels,
+                    temb_channels=0,
+                    dropout=0.0,
+                ),
+                nn.Conv2d(2 * in_channels, in_channels, 1),
+                Upsample(in_channels, with_conv=True),
+            ]
+        )
+        # end
+        self.norm_out = Normalize(in_channels)
+        self.conv_out = torch.nn.Conv2d(
+            in_channels, out_channels, kernel_size=3, stride=1, padding=1
+        )
+
+    def forward(self, x):
+        for i, layer in enumerate(self.model):
+            if i in [1, 2, 3]:
+                x = layer(x, None)
+            else:
+                x = layer(x)
+
+        h = self.norm_out(x)
+        h = nonlinearity(h)
+        x = self.conv_out(h)
+        return x
+
+
+class UpsampleDecoder(nn.Module):
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        ch,
+        num_res_blocks,
+        resolution,
+        ch_mult=(2, 2),
+        dropout=0.0,
+    ):
+        super().__init__()
+        # upsampling
+        self.temb_ch = 0
+        self.num_resolutions = len(ch_mult)
+        self.num_res_blocks = num_res_blocks
+        block_in = in_channels
+        curr_res = resolution // 2 ** (self.num_resolutions - 1)
+        self.res_blocks = nn.ModuleList()
+        self.upsample_blocks = nn.ModuleList()
+        for i_level in range(self.num_resolutions):
+            res_block = []
+            block_out = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks + 1):
+                res_block.append(
+                    ResnetBlock(
+                        in_channels=block_in,
+                        out_channels=block_out,
+                        temb_channels=self.temb_ch,
+                        dropout=dropout,
+                    )
+                )
+                block_in = block_out
+            self.res_blocks.append(nn.ModuleList(res_block))
+            if i_level != self.num_resolutions - 1:
+                self.upsample_blocks.append(Upsample(block_in, True))
+                curr_res = curr_res * 2
+
+        # end
+        self.norm_out = Normalize(block_in)
+        self.conv_out = torch.nn.Conv2d(
+            block_in, out_channels, kernel_size=3, stride=1, padding=1
+        )
+
+    def forward(self, x):
+        # upsampling
+        h = x
+        for k, i_level in enumerate(range(self.num_resolutions)):
+            for i_block in range(self.num_res_blocks + 1):
+                h = self.res_blocks[i_level][i_block](h, None)
+            if i_level != self.num_resolutions - 1:
+                h = self.upsample_blocks[k](h)
+        h = self.norm_out(h)
+        h = nonlinearity(h)
+        h = self.conv_out(h)
+        return h
+
+
+class LatentRescaler(nn.Module):
+    def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
+        super().__init__()
+        # residual block, interpolate, residual block
+        self.factor = factor
+        self.conv_in = nn.Conv2d(
+            in_channels, mid_channels, kernel_size=3, stride=1, padding=1
+        )
+        self.res_block1 = nn.ModuleList(
+            [
+                ResnetBlock(
+                    in_channels=mid_channels,
+                    out_channels=mid_channels,
+                    temb_channels=0,
+                    dropout=0.0,
+                )
+                for _ in range(depth)
+            ]
+        )
+        self.attn = AttnBlock(mid_channels)
+        self.res_block2 = nn.ModuleList(
+            [
+                ResnetBlock(
+                    in_channels=mid_channels,
+                    out_channels=mid_channels,
+                    temb_channels=0,
+                    dropout=0.0,
+                )
+                for _ in range(depth)
+            ]
+        )
+
+        self.conv_out = nn.Conv2d(
+            mid_channels,
+            out_channels,
+            kernel_size=1,
+        )
+
+    def forward(self, x):
+        x = self.conv_in(x)
+        for block in self.res_block1:
+            x = block(x, None)
+        x = torch.nn.functional.interpolate(
+            x,
+            size=(
+                int(round(x.shape[2] * self.factor)),
+                int(round(x.shape[3] * self.factor)),
+            ),
+        )
+        x = self.attn(x)
+        for block in self.res_block2:
+            x = block(x, None)
+        x = self.conv_out(x)
+        return x
+
+
+class MergedRescaleEncoder(nn.Module):
+    def __init__(
+        self,
+        in_channels,
+        ch,
+        resolution,
+        out_ch,
+        num_res_blocks,
+        attn_resolutions,
+        dropout=0.0,
+        resamp_with_conv=True,
+        ch_mult=(1, 2, 4, 8),
+        rescale_factor=1.0,
+        rescale_module_depth=1,
+    ):
+        super().__init__()
+        intermediate_chn = ch * ch_mult[-1]
+        self.encoder = Encoder(
+            in_channels=in_channels,
+            num_res_blocks=num_res_blocks,
+            ch=ch,
+            ch_mult=ch_mult,
+            z_channels=intermediate_chn,
+            double_z=False,
+            resolution=resolution,
+            attn_resolutions=attn_resolutions,
+            dropout=dropout,
+            resamp_with_conv=resamp_with_conv,
+            out_ch=None,
+        )
+        self.rescaler = LatentRescaler(
+            factor=rescale_factor,
+            in_channels=intermediate_chn,
+            mid_channels=intermediate_chn,
+            out_channels=out_ch,
+            depth=rescale_module_depth,
+        )
+
+    def forward(self, x):
+        x = self.encoder(x)
+        x = self.rescaler(x)
+        return x
+
+
+class MergedRescaleDecoder(nn.Module):
+    def __init__(
+        self,
+        z_channels,
+        out_ch,
+        resolution,
+        num_res_blocks,
+        attn_resolutions,
+        ch,
+        ch_mult=(1, 2, 4, 8),
+        dropout=0.0,
+        resamp_with_conv=True,
+        rescale_factor=1.0,
+        rescale_module_depth=1,
+    ):
+        super().__init__()
+        tmp_chn = z_channels * ch_mult[-1]
+        self.decoder = Decoder(
+            out_ch=out_ch,
+            z_channels=tmp_chn,
+            attn_resolutions=attn_resolutions,
+            dropout=dropout,
+            resamp_with_conv=resamp_with_conv,
+            in_channels=None,
+            num_res_blocks=num_res_blocks,
+            ch_mult=ch_mult,
+            resolution=resolution,
+            ch=ch,
+        )
+        self.rescaler = LatentRescaler(
+            factor=rescale_factor,
+            in_channels=z_channels,
+            mid_channels=tmp_chn,
+            out_channels=tmp_chn,
+            depth=rescale_module_depth,
+        )
+
+    def forward(self, x):
+        x = self.rescaler(x)
+        x = self.decoder(x)
+        return x
+
+
+class Upsampler(nn.Module):
+    def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
+        super().__init__()
+        assert out_size >= in_size
+        num_blocks = int(np.log2(out_size // in_size)) + 1
+        factor_up = 1.0 + (out_size % in_size)
+        print(
+            f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}"
+        )
+        self.rescaler = LatentRescaler(
+            factor=factor_up,
+            in_channels=in_channels,
+            mid_channels=2 * in_channels,
+            out_channels=in_channels,
+        )
+        self.decoder = Decoder(
+            out_ch=out_channels,
+            resolution=out_size,
+            z_channels=in_channels,
+            num_res_blocks=2,
+            attn_resolutions=[],
+            in_channels=None,
+            ch=in_channels,
+            ch_mult=[ch_mult for _ in range(num_blocks)],
+        )
+
+    def forward(self, x):
+        x = self.rescaler(x)
+        x = self.decoder(x)
+        return x
+
+
+class Resize(nn.Module):
+    def __init__(self, in_channels=None, learned=False, mode="bilinear"):
+        super().__init__()
+        self.with_conv = learned
+        self.mode = mode
+        if self.with_conv:
+            print(
+                f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode"
+            )
+            raise NotImplementedError()
+            assert in_channels is not None
+            # no asymmetric padding in torch conv, must do it ourselves
+            self.conv = torch.nn.Conv2d(
+                in_channels, in_channels, kernel_size=4, stride=2, padding=1
+            )
+
+    def forward(self, x, scale_factor=1.0):
+        if scale_factor == 1.0:
+            return x
+        else:
+            x = torch.nn.functional.interpolate(
+                x, mode=self.mode, align_corners=False, scale_factor=scale_factor
+            )
+        return x
diff --git a/iopaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py b/iopaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py
new file mode 100644
index 0000000000000000000000000000000000000000..fd3d6bed17710818aed0c3c77b5c2e85c555a82e
--- /dev/null
+++ b/iopaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py
@@ -0,0 +1,786 @@
+from abc import abstractmethod
+import math
+
+import numpy as np
+import torch as th
+import torch.nn as nn
+import torch.nn.functional as F
+
+from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
+    checkpoint,
+    conv_nd,
+    linear,
+    avg_pool_nd,
+    zero_module,
+    normalization,
+    timestep_embedding,
+)
+from iopaint.model.anytext.ldm.modules.attention import SpatialTransformer
+from iopaint.model.anytext.ldm.util import exists
+
+
+# dummy replace
+def convert_module_to_f16(x):
+    pass
+
+def convert_module_to_f32(x):
+    pass
+
+
+## go
+class AttentionPool2d(nn.Module):
+    """
+    Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
+    """
+
+    def __init__(
+        self,
+        spacial_dim: int,
+        embed_dim: int,
+        num_heads_channels: int,
+        output_dim: int = None,
+    ):
+        super().__init__()
+        self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
+        self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
+        self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
+        self.num_heads = embed_dim // num_heads_channels
+        self.attention = QKVAttention(self.num_heads)
+
+    def forward(self, x):
+        b, c, *_spatial = x.shape
+        x = x.reshape(b, c, -1)  # NC(HW)
+        x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)  # NC(HW+1)
+        x = x + self.positional_embedding[None, :, :].to(x.dtype)  # NC(HW+1)
+        x = self.qkv_proj(x)
+        x = self.attention(x)
+        x = self.c_proj(x)
+        return x[:, :, 0]
+
+
+class TimestepBlock(nn.Module):
+    """
+    Any module where forward() takes timestep embeddings as a second argument.
+    """
+
+    @abstractmethod
+    def forward(self, x, emb):
+        """
+        Apply the module to `x` given `emb` timestep embeddings.
+        """
+
+
+class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
+    """
+    A sequential module that passes timestep embeddings to the children that
+    support it as an extra input.
+    """
+
+    def forward(self, x, emb, context=None):
+        for layer in self:
+            if isinstance(layer, TimestepBlock):
+                x = layer(x, emb)
+            elif isinstance(layer, SpatialTransformer):
+                x = layer(x, context)
+            else:
+                x = layer(x)
+        return x
+
+
+class Upsample(nn.Module):
+    """
+    An upsampling layer with an optional convolution.
+    :param channels: channels in the inputs and outputs.
+    :param use_conv: a bool determining if a convolution is applied.
+    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+                 upsampling occurs in the inner-two dimensions.
+    """
+
+    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
+        super().__init__()
+        self.channels = channels
+        self.out_channels = out_channels or channels
+        self.use_conv = use_conv
+        self.dims = dims
+        if use_conv:
+            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
+
+    def forward(self, x):
+        assert x.shape[1] == self.channels
+        if self.dims == 3:
+            x = F.interpolate(
+                x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
+            )
+        else:
+            x = F.interpolate(x, scale_factor=2, mode="nearest")
+        if self.use_conv:
+            x = self.conv(x)
+        return x
+
+class TransposedUpsample(nn.Module):
+    'Learned 2x upsampling without padding'
+    def __init__(self, channels, out_channels=None, ks=5):
+        super().__init__()
+        self.channels = channels
+        self.out_channels = out_channels or channels
+
+        self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
+
+    def forward(self,x):
+        return self.up(x)
+
+
+class Downsample(nn.Module):
+    """
+    A downsampling layer with an optional convolution.
+    :param channels: channels in the inputs and outputs.
+    :param use_conv: a bool determining if a convolution is applied.
+    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+                 downsampling occurs in the inner-two dimensions.
+    """
+
+    def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
+        super().__init__()
+        self.channels = channels
+        self.out_channels = out_channels or channels
+        self.use_conv = use_conv
+        self.dims = dims
+        stride = 2 if dims != 3 else (1, 2, 2)
+        if use_conv:
+            self.op = conv_nd(
+                dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
+            )
+        else:
+            assert self.channels == self.out_channels
+            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
+
+    def forward(self, x):
+        assert x.shape[1] == self.channels
+        return self.op(x)
+
+
+class ResBlock(TimestepBlock):
+    """
+    A residual block that can optionally change the number of channels.
+    :param channels: the number of input channels.
+    :param emb_channels: the number of timestep embedding channels.
+    :param dropout: the rate of dropout.
+    :param out_channels: if specified, the number of out channels.
+    :param use_conv: if True and out_channels is specified, use a spatial
+        convolution instead of a smaller 1x1 convolution to change the
+        channels in the skip connection.
+    :param dims: determines if the signal is 1D, 2D, or 3D.
+    :param use_checkpoint: if True, use gradient checkpointing on this module.
+    :param up: if True, use this block for upsampling.
+    :param down: if True, use this block for downsampling.
+    """
+
+    def __init__(
+        self,
+        channels,
+        emb_channels,
+        dropout,
+        out_channels=None,
+        use_conv=False,
+        use_scale_shift_norm=False,
+        dims=2,
+        use_checkpoint=False,
+        up=False,
+        down=False,
+    ):
+        super().__init__()
+        self.channels = channels
+        self.emb_channels = emb_channels
+        self.dropout = dropout
+        self.out_channels = out_channels or channels
+        self.use_conv = use_conv
+        self.use_checkpoint = use_checkpoint
+        self.use_scale_shift_norm = use_scale_shift_norm
+
+        self.in_layers = nn.Sequential(
+            normalization(channels),
+            nn.SiLU(),
+            conv_nd(dims, channels, self.out_channels, 3, padding=1),
+        )
+
+        self.updown = up or down
+
+        if up:
+            self.h_upd = Upsample(channels, False, dims)
+            self.x_upd = Upsample(channels, False, dims)
+        elif down:
+            self.h_upd = Downsample(channels, False, dims)
+            self.x_upd = Downsample(channels, False, dims)
+        else:
+            self.h_upd = self.x_upd = nn.Identity()
+
+        self.emb_layers = nn.Sequential(
+            nn.SiLU(),
+            linear(
+                emb_channels,
+                2 * self.out_channels if use_scale_shift_norm else self.out_channels,
+            ),
+        )
+        self.out_layers = nn.Sequential(
+            normalization(self.out_channels),
+            nn.SiLU(),
+            nn.Dropout(p=dropout),
+            zero_module(
+                conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
+            ),
+        )
+
+        if self.out_channels == channels:
+            self.skip_connection = nn.Identity()
+        elif use_conv:
+            self.skip_connection = conv_nd(
+                dims, channels, self.out_channels, 3, padding=1
+            )
+        else:
+            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
+
+    def forward(self, x, emb):
+        """
+        Apply the block to a Tensor, conditioned on a timestep embedding.
+        :param x: an [N x C x ...] Tensor of features.
+        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
+        :return: an [N x C x ...] Tensor of outputs.
+        """
+        return checkpoint(
+            self._forward, (x, emb), self.parameters(), self.use_checkpoint
+        )
+
+
+    def _forward(self, x, emb):
+        if self.updown:
+            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
+            h = in_rest(x)
+            h = self.h_upd(h)
+            x = self.x_upd(x)
+            h = in_conv(h)
+        else:
+            h = self.in_layers(x)
+        emb_out = self.emb_layers(emb).type(h.dtype)
+        while len(emb_out.shape) < len(h.shape):
+            emb_out = emb_out[..., None]
+        if self.use_scale_shift_norm:
+            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
+            scale, shift = th.chunk(emb_out, 2, dim=1)
+            h = out_norm(h) * (1 + scale) + shift
+            h = out_rest(h)
+        else:
+            h = h + emb_out
+            h = self.out_layers(h)
+        return self.skip_connection(x) + h
+
+
+class AttentionBlock(nn.Module):
+    """
+    An attention block that allows spatial positions to attend to each other.
+    Originally ported from here, but adapted to the N-d case.
+    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
+    """
+
+    def __init__(
+        self,
+        channels,
+        num_heads=1,
+        num_head_channels=-1,
+        use_checkpoint=False,
+        use_new_attention_order=False,
+    ):
+        super().__init__()
+        self.channels = channels
+        if num_head_channels == -1:
+            self.num_heads = num_heads
+        else:
+            assert (
+                channels % num_head_channels == 0
+            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
+            self.num_heads = channels // num_head_channels
+        self.use_checkpoint = use_checkpoint
+        self.norm = normalization(channels)
+        self.qkv = conv_nd(1, channels, channels * 3, 1)
+        if use_new_attention_order:
+            # split qkv before split heads
+            self.attention = QKVAttention(self.num_heads)
+        else:
+            # split heads before split qkv
+            self.attention = QKVAttentionLegacy(self.num_heads)
+
+        self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
+
+    def forward(self, x):
+        return checkpoint(self._forward, (x,), self.parameters(), True)   # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
+        #return pt_checkpoint(self._forward, x)  # pytorch
+
+    def _forward(self, x):
+        b, c, *spatial = x.shape
+        x = x.reshape(b, c, -1)
+        qkv = self.qkv(self.norm(x))
+        h = self.attention(qkv)
+        h = self.proj_out(h)
+        return (x + h).reshape(b, c, *spatial)
+
+
+def count_flops_attn(model, _x, y):
+    """
+    A counter for the `thop` package to count the operations in an
+    attention operation.
+    Meant to be used like:
+        macs, params = thop.profile(
+            model,
+            inputs=(inputs, timestamps),
+            custom_ops={QKVAttention: QKVAttention.count_flops},
+        )
+    """
+    b, c, *spatial = y[0].shape
+    num_spatial = int(np.prod(spatial))
+    # We perform two matmuls with the same number of ops.
+    # The first computes the weight matrix, the second computes
+    # the combination of the value vectors.
+    matmul_ops = 2 * b * (num_spatial ** 2) * c
+    model.total_ops += th.DoubleTensor([matmul_ops])
+
+
+class QKVAttentionLegacy(nn.Module):
+    """
+    A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
+    """
+
+    def __init__(self, n_heads):
+        super().__init__()
+        self.n_heads = n_heads
+
+    def forward(self, qkv):
+        """
+        Apply QKV attention.
+        :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
+        :return: an [N x (H * C) x T] tensor after attention.
+        """
+        bs, width, length = qkv.shape
+        assert width % (3 * self.n_heads) == 0
+        ch = width // (3 * self.n_heads)
+        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
+        scale = 1 / math.sqrt(math.sqrt(ch))
+        weight = th.einsum(
+            "bct,bcs->bts", q * scale, k * scale
+        )  # More stable with f16 than dividing afterwards
+        weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+        a = th.einsum("bts,bcs->bct", weight, v)
+        return a.reshape(bs, -1, length)
+
+    @staticmethod
+    def count_flops(model, _x, y):
+        return count_flops_attn(model, _x, y)
+
+
+class QKVAttention(nn.Module):
+    """
+    A module which performs QKV attention and splits in a different order.
+    """
+
+    def __init__(self, n_heads):
+        super().__init__()
+        self.n_heads = n_heads
+
+    def forward(self, qkv):
+        """
+        Apply QKV attention.
+        :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
+        :return: an [N x (H * C) x T] tensor after attention.
+        """
+        bs, width, length = qkv.shape
+        assert width % (3 * self.n_heads) == 0
+        ch = width // (3 * self.n_heads)
+        q, k, v = qkv.chunk(3, dim=1)
+        scale = 1 / math.sqrt(math.sqrt(ch))
+        weight = th.einsum(
+            "bct,bcs->bts",
+            (q * scale).view(bs * self.n_heads, ch, length),
+            (k * scale).view(bs * self.n_heads, ch, length),
+        )  # More stable with f16 than dividing afterwards
+        weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+        a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
+        return a.reshape(bs, -1, length)
+
+    @staticmethod
+    def count_flops(model, _x, y):
+        return count_flops_attn(model, _x, y)
+
+
+class UNetModel(nn.Module):
+    """
+    The full UNet model with attention and timestep embedding.
+    :param in_channels: channels in the input Tensor.
+    :param model_channels: base channel count for the model.
+    :param out_channels: channels in the output Tensor.
+    :param num_res_blocks: number of residual blocks per downsample.
+    :param attention_resolutions: a collection of downsample rates at which
+        attention will take place. May be a set, list, or tuple.
+        For example, if this contains 4, then at 4x downsampling, attention
+        will be used.
+    :param dropout: the dropout probability.
+    :param channel_mult: channel multiplier for each level of the UNet.
+    :param conv_resample: if True, use learned convolutions for upsampling and
+        downsampling.
+    :param dims: determines if the signal is 1D, 2D, or 3D.
+    :param num_classes: if specified (as an int), then this model will be
+        class-conditional with `num_classes` classes.
+    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
+    :param num_heads: the number of attention heads in each attention layer.
+    :param num_heads_channels: if specified, ignore num_heads and instead use
+                               a fixed channel width per attention head.
+    :param num_heads_upsample: works with num_heads to set a different number
+                               of heads for upsampling. Deprecated.
+    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
+    :param resblock_updown: use residual blocks for up/downsampling.
+    :param use_new_attention_order: use a different attention pattern for potentially
+                                    increased efficiency.
+    """
+
+    def __init__(
+        self,
+        image_size,
+        in_channels,
+        model_channels,
+        out_channels,
+        num_res_blocks,
+        attention_resolutions,
+        dropout=0,
+        channel_mult=(1, 2, 4, 8),
+        conv_resample=True,
+        dims=2,
+        num_classes=None,
+        use_checkpoint=False,
+        use_fp16=False,
+        num_heads=-1,
+        num_head_channels=-1,
+        num_heads_upsample=-1,
+        use_scale_shift_norm=False,
+        resblock_updown=False,
+        use_new_attention_order=False,
+        use_spatial_transformer=False,    # custom transformer support
+        transformer_depth=1,              # custom transformer support
+        context_dim=None,                 # custom transformer support
+        n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
+        legacy=True,
+        disable_self_attentions=None,
+        num_attention_blocks=None,
+        disable_middle_self_attn=False,
+        use_linear_in_transformer=False,
+    ):
+        super().__init__()
+        if use_spatial_transformer:
+            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
+
+        if context_dim is not None:
+            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
+            from omegaconf.listconfig import ListConfig
+            if type(context_dim) == ListConfig:
+                context_dim = list(context_dim)
+
+        if num_heads_upsample == -1:
+            num_heads_upsample = num_heads
+
+        if num_heads == -1:
+            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
+
+        if num_head_channels == -1:
+            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
+
+        self.image_size = image_size
+        self.in_channels = in_channels
+        self.model_channels = model_channels
+        self.out_channels = out_channels
+        if isinstance(num_res_blocks, int):
+            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
+        else:
+            if len(num_res_blocks) != len(channel_mult):
+                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
+                                 "as a list/tuple (per-level) with the same length as channel_mult")
+            self.num_res_blocks = num_res_blocks
+        if disable_self_attentions is not None:
+            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
+            assert len(disable_self_attentions) == len(channel_mult)
+        if num_attention_blocks is not None:
+            assert len(num_attention_blocks) == len(self.num_res_blocks)
+            assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
+            print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
+                  f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
+                  f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
+                  f"attention will still not be set.")
+        self.use_fp16 = use_fp16
+        self.attention_resolutions = attention_resolutions
+        self.dropout = dropout
+        self.channel_mult = channel_mult
+        self.conv_resample = conv_resample
+        self.num_classes = num_classes
+        self.use_checkpoint = use_checkpoint
+        self.dtype = th.float16 if use_fp16 else th.float32
+        self.num_heads = num_heads
+        self.num_head_channels = num_head_channels
+        self.num_heads_upsample = num_heads_upsample
+        self.predict_codebook_ids = n_embed is not None
+
+        time_embed_dim = model_channels * 4
+        self.time_embed = nn.Sequential(
+            linear(model_channels, time_embed_dim),
+            nn.SiLU(),
+            linear(time_embed_dim, time_embed_dim),
+        )
+
+        if self.num_classes is not None:
+            if isinstance(self.num_classes, int):
+                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
+            elif self.num_classes == "continuous":
+                print("setting up linear c_adm embedding layer")
+                self.label_emb = nn.Linear(1, time_embed_dim)
+            else:
+                raise ValueError()
+
+        self.input_blocks = nn.ModuleList(
+            [
+                TimestepEmbedSequential(
+                    conv_nd(dims, in_channels, model_channels, 3, padding=1)
+                )
+            ]
+        )
+        self._feature_size = model_channels
+        input_block_chans = [model_channels]
+        ch = model_channels
+        ds = 1
+        for level, mult in enumerate(channel_mult):
+            for nr in range(self.num_res_blocks[level]):
+                layers = [
+                    ResBlock(
+                        ch,
+                        time_embed_dim,
+                        dropout,
+                        out_channels=mult * model_channels,
+                        dims=dims,
+                        use_checkpoint=use_checkpoint,
+                        use_scale_shift_norm=use_scale_shift_norm,
+                    )
+                ]
+                ch = mult * model_channels
+                if ds in attention_resolutions:
+                    if num_head_channels == -1:
+                        dim_head = ch // num_heads
+                    else:
+                        num_heads = ch // num_head_channels
+                        dim_head = num_head_channels
+                    if legacy:
+                        #num_heads = 1
+                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+                    if exists(disable_self_attentions):
+                        disabled_sa = disable_self_attentions[level]
+                    else:
+                        disabled_sa = False
+
+                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
+                        layers.append(
+                            AttentionBlock(
+                                ch,
+                                use_checkpoint=use_checkpoint,
+                                num_heads=num_heads,
+                                num_head_channels=dim_head,
+                                use_new_attention_order=use_new_attention_order,
+                            ) if not use_spatial_transformer else SpatialTransformer(
+                                ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
+                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
+                                use_checkpoint=use_checkpoint
+                            )
+                        )
+                self.input_blocks.append(TimestepEmbedSequential(*layers))
+                self._feature_size += ch
+                input_block_chans.append(ch)
+            if level != len(channel_mult) - 1:
+                out_ch = ch
+                self.input_blocks.append(
+                    TimestepEmbedSequential(
+                        ResBlock(
+                            ch,
+                            time_embed_dim,
+                            dropout,
+                            out_channels=out_ch,
+                            dims=dims,
+                            use_checkpoint=use_checkpoint,
+                            use_scale_shift_norm=use_scale_shift_norm,
+                            down=True,
+                        )
+                        if resblock_updown
+                        else Downsample(
+                            ch, conv_resample, dims=dims, out_channels=out_ch
+                        )
+                    )
+                )
+                ch = out_ch
+                input_block_chans.append(ch)
+                ds *= 2
+                self._feature_size += ch
+
+        if num_head_channels == -1:
+            dim_head = ch // num_heads
+        else:
+            num_heads = ch // num_head_channels
+            dim_head = num_head_channels
+        if legacy:
+            #num_heads = 1
+            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+        self.middle_block = TimestepEmbedSequential(
+            ResBlock(
+                ch,
+                time_embed_dim,
+                dropout,
+                dims=dims,
+                use_checkpoint=use_checkpoint,
+                use_scale_shift_norm=use_scale_shift_norm,
+            ),
+            AttentionBlock(
+                ch,
+                use_checkpoint=use_checkpoint,
+                num_heads=num_heads,
+                num_head_channels=dim_head,
+                use_new_attention_order=use_new_attention_order,
+            ) if not use_spatial_transformer else SpatialTransformer(  # always uses a self-attn
+                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
+                            disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
+                            use_checkpoint=use_checkpoint
+                        ),
+            ResBlock(
+                ch,
+                time_embed_dim,
+                dropout,
+                dims=dims,
+                use_checkpoint=use_checkpoint,
+                use_scale_shift_norm=use_scale_shift_norm,
+            ),
+        )
+        self._feature_size += ch
+
+        self.output_blocks = nn.ModuleList([])
+        for level, mult in list(enumerate(channel_mult))[::-1]:
+            for i in range(self.num_res_blocks[level] + 1):
+                ich = input_block_chans.pop()
+                layers = [
+                    ResBlock(
+                        ch + ich,
+                        time_embed_dim,
+                        dropout,
+                        out_channels=model_channels * mult,
+                        dims=dims,
+                        use_checkpoint=use_checkpoint,
+                        use_scale_shift_norm=use_scale_shift_norm,
+                    )
+                ]
+                ch = model_channels * mult
+                if ds in attention_resolutions:
+                    if num_head_channels == -1:
+                        dim_head = ch // num_heads
+                    else:
+                        num_heads = ch // num_head_channels
+                        dim_head = num_head_channels
+                    if legacy:
+                        #num_heads = 1
+                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+                    if exists(disable_self_attentions):
+                        disabled_sa = disable_self_attentions[level]
+                    else:
+                        disabled_sa = False
+
+                    if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
+                        layers.append(
+                            AttentionBlock(
+                                ch,
+                                use_checkpoint=use_checkpoint,
+                                num_heads=num_heads_upsample,
+                                num_head_channels=dim_head,
+                                use_new_attention_order=use_new_attention_order,
+                            ) if not use_spatial_transformer else SpatialTransformer(
+                                ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
+                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
+                                use_checkpoint=use_checkpoint
+                            )
+                        )
+                if level and i == self.num_res_blocks[level]:
+                    out_ch = ch
+                    layers.append(
+                        ResBlock(
+                            ch,
+                            time_embed_dim,
+                            dropout,
+                            out_channels=out_ch,
+                            dims=dims,
+                            use_checkpoint=use_checkpoint,
+                            use_scale_shift_norm=use_scale_shift_norm,
+                            up=True,
+                        )
+                        if resblock_updown
+                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
+                    )
+                    ds //= 2
+                self.output_blocks.append(TimestepEmbedSequential(*layers))
+                self._feature_size += ch
+
+        self.out = nn.Sequential(
+            normalization(ch),
+            nn.SiLU(),
+            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
+        )
+        if self.predict_codebook_ids:
+            self.id_predictor = nn.Sequential(
+            normalization(ch),
+            conv_nd(dims, model_channels, n_embed, 1),
+            #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
+        )
+
+    def convert_to_fp16(self):
+        """
+        Convert the torso of the model to float16.
+        """
+        self.input_blocks.apply(convert_module_to_f16)
+        self.middle_block.apply(convert_module_to_f16)
+        self.output_blocks.apply(convert_module_to_f16)
+
+    def convert_to_fp32(self):
+        """
+        Convert the torso of the model to float32.
+        """
+        self.input_blocks.apply(convert_module_to_f32)
+        self.middle_block.apply(convert_module_to_f32)
+        self.output_blocks.apply(convert_module_to_f32)
+
+    def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
+        """
+        Apply the model to an input batch.
+        :param x: an [N x C x ...] Tensor of inputs.
+        :param timesteps: a 1-D batch of timesteps.
+        :param context: conditioning plugged in via crossattn
+        :param y: an [N] Tensor of labels, if class-conditional.
+        :return: an [N x C x ...] Tensor of outputs.
+        """
+        assert (y is not None) == (
+            self.num_classes is not None
+        ), "must specify y if and only if the model is class-conditional"
+        hs = []
+        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
+        emb = self.time_embed(t_emb)
+
+        if self.num_classes is not None:
+            assert y.shape[0] == x.shape[0]
+            emb = emb + self.label_emb(y)
+
+        h = x.type(self.dtype)
+        for module in self.input_blocks:
+            h = module(h, emb, context)
+            hs.append(h)
+        h = self.middle_block(h, emb, context)
+        for module in self.output_blocks:
+            h = th.cat([h, hs.pop()], dim=1)
+            h = module(h, emb, context)
+        h = h.type(x.dtype)
+        if self.predict_codebook_ids:
+            return self.id_predictor(h)
+        else:
+            return self.out(h)
diff --git a/iopaint/model/anytext/ldm/modules/distributions/distributions.py b/iopaint/model/anytext/ldm/modules/distributions/distributions.py
new file mode 100644
index 0000000000000000000000000000000000000000..f2b8ef901130efc171aa69742ca0244d94d3f2e9
--- /dev/null
+++ b/iopaint/model/anytext/ldm/modules/distributions/distributions.py
@@ -0,0 +1,92 @@
+import torch
+import numpy as np
+
+
+class AbstractDistribution:
+    def sample(self):
+        raise NotImplementedError()
+
+    def mode(self):
+        raise NotImplementedError()
+
+
+class DiracDistribution(AbstractDistribution):
+    def __init__(self, value):
+        self.value = value
+
+    def sample(self):
+        return self.value
+
+    def mode(self):
+        return self.value
+
+
+class DiagonalGaussianDistribution(object):
+    def __init__(self, parameters, deterministic=False):
+        self.parameters = parameters
+        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
+        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
+        self.deterministic = deterministic
+        self.std = torch.exp(0.5 * self.logvar)
+        self.var = torch.exp(self.logvar)
+        if self.deterministic:
+            self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
+
+    def sample(self):
+        x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
+        return x
+
+    def kl(self, other=None):
+        if self.deterministic:
+            return torch.Tensor([0.])
+        else:
+            if other is None:
+                return 0.5 * torch.sum(torch.pow(self.mean, 2)
+                                       + self.var - 1.0 - self.logvar,
+                                       dim=[1, 2, 3])
+            else:
+                return 0.5 * torch.sum(
+                    torch.pow(self.mean - other.mean, 2) / other.var
+                    + self.var / other.var - 1.0 - self.logvar + other.logvar,
+                    dim=[1, 2, 3])
+
+    def nll(self, sample, dims=[1,2,3]):
+        if self.deterministic:
+            return torch.Tensor([0.])
+        logtwopi = np.log(2.0 * np.pi)
+        return 0.5 * torch.sum(
+            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
+            dim=dims)
+
+    def mode(self):
+        return self.mean
+
+
+def normal_kl(mean1, logvar1, mean2, logvar2):
+    """
+    source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
+    Compute the KL divergence between two gaussians.
+    Shapes are automatically broadcasted, so batches can be compared to
+    scalars, among other use cases.
+    """
+    tensor = None
+    for obj in (mean1, logvar1, mean2, logvar2):
+        if isinstance(obj, torch.Tensor):
+            tensor = obj
+            break
+    assert tensor is not None, "at least one argument must be a Tensor"
+
+    # Force variances to be Tensors. Broadcasting helps convert scalars to
+    # Tensors, but it does not work for torch.exp().
+    logvar1, logvar2 = [
+        x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
+        for x in (logvar1, logvar2)
+    ]
+
+    return 0.5 * (
+        -1.0
+        + logvar2
+        - logvar1
+        + torch.exp(logvar1 - logvar2)
+        + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
+    )
diff --git a/iopaint/model/anytext/ldm/modules/ema.py b/iopaint/model/anytext/ldm/modules/ema.py
new file mode 100644
index 0000000000000000000000000000000000000000..bded25019b9bcbcd0260f0b8185f8c7859ca58c4
--- /dev/null
+++ b/iopaint/model/anytext/ldm/modules/ema.py
@@ -0,0 +1,80 @@
+import torch
+from torch import nn
+
+
+class LitEma(nn.Module):
+    def __init__(self, model, decay=0.9999, use_num_upates=True):
+        super().__init__()
+        if decay < 0.0 or decay > 1.0:
+            raise ValueError('Decay must be between 0 and 1')
+
+        self.m_name2s_name = {}
+        self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
+        self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
+        else torch.tensor(-1, dtype=torch.int))
+
+        for name, p in model.named_parameters():
+            if p.requires_grad:
+                # remove as '.'-character is not allowed in buffers
+                s_name = name.replace('.', '')
+                self.m_name2s_name.update({name: s_name})
+                self.register_buffer(s_name, p.clone().detach().data)
+
+        self.collected_params = []
+
+    def reset_num_updates(self):
+        del self.num_updates
+        self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
+
+    def forward(self, model):
+        decay = self.decay
+
+        if self.num_updates >= 0:
+            self.num_updates += 1
+            decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
+
+        one_minus_decay = 1.0 - decay
+
+        with torch.no_grad():
+            m_param = dict(model.named_parameters())
+            shadow_params = dict(self.named_buffers())
+
+            for key in m_param:
+                if m_param[key].requires_grad:
+                    sname = self.m_name2s_name[key]
+                    shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
+                    shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
+                else:
+                    assert not key in self.m_name2s_name
+
+    def copy_to(self, model):
+        m_param = dict(model.named_parameters())
+        shadow_params = dict(self.named_buffers())
+        for key in m_param:
+            if m_param[key].requires_grad:
+                m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
+            else:
+                assert not key in self.m_name2s_name
+
+    def store(self, parameters):
+        """
+        Save the current parameters for restoring later.
+        Args:
+          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+            temporarily stored.
+        """
+        self.collected_params = [param.clone() for param in parameters]
+
+    def restore(self, parameters):
+        """
+        Restore the parameters stored with the `store` method.
+        Useful to validate the model with EMA parameters without affecting the
+        original optimization process. Store the parameters before the
+        `copy_to` method. After validation (or model saving), use this to
+        restore the former parameters.
+        Args:
+          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+            updated with the stored parameters.
+        """
+        for c_param, param in zip(self.collected_params, parameters):
+            param.data.copy_(c_param.data)
diff --git a/iopaint/model/anytext/ldm/modules/encoders/modules.py b/iopaint/model/anytext/ldm/modules/encoders/modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..ceac395f935c70653224f97205c3ec37fcc84db4
--- /dev/null
+++ b/iopaint/model/anytext/ldm/modules/encoders/modules.py
@@ -0,0 +1,411 @@
+import torch
+import torch.nn as nn
+from torch.utils.checkpoint import checkpoint
+
+from transformers import (
+    T5Tokenizer,
+    T5EncoderModel,
+    CLIPTokenizer,
+    CLIPTextModel,
+    AutoProcessor,
+    CLIPVisionModelWithProjection,
+)
+
+from iopaint.model.anytext.ldm.util import count_params
+
+
+def _expand_mask(mask, dtype, tgt_len=None):
+    """
+    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
+    """
+    bsz, src_len = mask.size()
+    tgt_len = tgt_len if tgt_len is not None else src_len
+
+    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
+
+    inverted_mask = 1.0 - expanded_mask
+
+    return inverted_mask.masked_fill(
+        inverted_mask.to(torch.bool), torch.finfo(dtype).min
+    )
+
+
+def _build_causal_attention_mask(bsz, seq_len, dtype):
+    # lazily create causal attention mask, with full attention between the vision tokens
+    # pytorch uses additive attention mask; fill with -inf
+    mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
+    mask.fill_(torch.tensor(torch.finfo(dtype).min))
+    mask.triu_(1)  # zero out the lower diagonal
+    mask = mask.unsqueeze(1)  # expand mask
+    return mask
+
+
+class AbstractEncoder(nn.Module):
+    def __init__(self):
+        super().__init__()
+
+    def encode(self, *args, **kwargs):
+        raise NotImplementedError
+
+
+class IdentityEncoder(AbstractEncoder):
+    def encode(self, x):
+        return x
+
+
+class ClassEmbedder(nn.Module):
+    def __init__(self, embed_dim, n_classes=1000, key="class", ucg_rate=0.1):
+        super().__init__()
+        self.key = key
+        self.embedding = nn.Embedding(n_classes, embed_dim)
+        self.n_classes = n_classes
+        self.ucg_rate = ucg_rate
+
+    def forward(self, batch, key=None, disable_dropout=False):
+        if key is None:
+            key = self.key
+        # this is for use in crossattn
+        c = batch[key][:, None]
+        if self.ucg_rate > 0.0 and not disable_dropout:
+            mask = 1.0 - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
+            c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
+            c = c.long()
+        c = self.embedding(c)
+        return c
+
+    def get_unconditional_conditioning(self, bs, device="cuda"):
+        uc_class = (
+            self.n_classes - 1
+        )  # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
+        uc = torch.ones((bs,), device=device) * uc_class
+        uc = {self.key: uc}
+        return uc
+
+
+def disabled_train(self, mode=True):
+    """Overwrite model.train with this function to make sure train/eval mode
+    does not change anymore."""
+    return self
+
+
+class FrozenT5Embedder(AbstractEncoder):
+    """Uses the T5 transformer encoder for text"""
+
+    def __init__(
+        self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True
+    ):  # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
+        super().__init__()
+        self.tokenizer = T5Tokenizer.from_pretrained(version)
+        self.transformer = T5EncoderModel.from_pretrained(version)
+        self.device = device
+        self.max_length = max_length  # TODO: typical value?
+        if freeze:
+            self.freeze()
+
+    def freeze(self):
+        self.transformer = self.transformer.eval()
+        # self.train = disabled_train
+        for param in self.parameters():
+            param.requires_grad = False
+
+    def forward(self, text):
+        batch_encoding = self.tokenizer(
+            text,
+            truncation=True,
+            max_length=self.max_length,
+            return_length=True,
+            return_overflowing_tokens=False,
+            padding="max_length",
+            return_tensors="pt",
+        )
+        tokens = batch_encoding["input_ids"].to(self.device)
+        outputs = self.transformer(input_ids=tokens)
+
+        z = outputs.last_hidden_state
+        return z
+
+    def encode(self, text):
+        return self(text)
+
+
+class FrozenCLIPEmbedder(AbstractEncoder):
+    """Uses the CLIP transformer encoder for text (from huggingface)"""
+
+    LAYERS = ["last", "pooled", "hidden"]
+
+    def __init__(
+        self,
+        version="openai/clip-vit-large-patch14",
+        device="cuda",
+        max_length=77,
+        freeze=True,
+        layer="last",
+        layer_idx=None,
+    ):  # clip-vit-base-patch32
+        super().__init__()
+        assert layer in self.LAYERS
+        self.tokenizer = CLIPTokenizer.from_pretrained(version)
+        self.transformer = CLIPTextModel.from_pretrained(version)
+        self.device = device
+        self.max_length = max_length
+        if freeze:
+            self.freeze()
+        self.layer = layer
+        self.layer_idx = layer_idx
+        if layer == "hidden":
+            assert layer_idx is not None
+            assert 0 <= abs(layer_idx) <= 12
+
+    def freeze(self):
+        self.transformer = self.transformer.eval()
+        # self.train = disabled_train
+        for param in self.parameters():
+            param.requires_grad = False
+
+    def forward(self, text):
+        batch_encoding = self.tokenizer(
+            text,
+            truncation=True,
+            max_length=self.max_length,
+            return_length=True,
+            return_overflowing_tokens=False,
+            padding="max_length",
+            return_tensors="pt",
+        )
+        tokens = batch_encoding["input_ids"].to(self.device)
+        outputs = self.transformer(
+            input_ids=tokens, output_hidden_states=self.layer == "hidden"
+        )
+        if self.layer == "last":
+            z = outputs.last_hidden_state
+        elif self.layer == "pooled":
+            z = outputs.pooler_output[:, None, :]
+        else:
+            z = outputs.hidden_states[self.layer_idx]
+        return z
+
+    def encode(self, text):
+        return self(text)
+
+
+class FrozenCLIPT5Encoder(AbstractEncoder):
+    def __init__(
+        self,
+        clip_version="openai/clip-vit-large-patch14",
+        t5_version="google/t5-v1_1-xl",
+        device="cuda",
+        clip_max_length=77,
+        t5_max_length=77,
+    ):
+        super().__init__()
+        self.clip_encoder = FrozenCLIPEmbedder(
+            clip_version, device, max_length=clip_max_length
+        )
+        self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
+        print(
+            f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
+            f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params."
+        )
+
+    def encode(self, text):
+        return self(text)
+
+    def forward(self, text):
+        clip_z = self.clip_encoder.encode(text)
+        t5_z = self.t5_encoder.encode(text)
+        return [clip_z, t5_z]
+
+
+class FrozenCLIPEmbedderT3(AbstractEncoder):
+    """Uses the CLIP transformer encoder for text (from Hugging Face)"""
+
+    def __init__(
+        self,
+        version="openai/clip-vit-large-patch14",
+        device="cuda",
+        max_length=77,
+        freeze=True,
+        use_vision=False,
+    ):
+        super().__init__()
+        self.tokenizer = CLIPTokenizer.from_pretrained(version)
+        self.transformer = CLIPTextModel.from_pretrained(version)
+        if use_vision:
+            self.vit = CLIPVisionModelWithProjection.from_pretrained(version)
+            self.processor = AutoProcessor.from_pretrained(version)
+        self.device = device
+        self.max_length = max_length
+        if freeze:
+            self.freeze()
+
+        def embedding_forward(
+            self,
+            input_ids=None,
+            position_ids=None,
+            inputs_embeds=None,
+            embedding_manager=None,
+        ):
+            seq_length = (
+                input_ids.shape[-1]
+                if input_ids is not None
+                else inputs_embeds.shape[-2]
+            )
+            if position_ids is None:
+                position_ids = self.position_ids[:, :seq_length]
+            if inputs_embeds is None:
+                inputs_embeds = self.token_embedding(input_ids)
+            if embedding_manager is not None:
+                inputs_embeds = embedding_manager(input_ids, inputs_embeds)
+            position_embeddings = self.position_embedding(position_ids)
+            embeddings = inputs_embeds + position_embeddings
+            return embeddings
+
+        self.transformer.text_model.embeddings.forward = embedding_forward.__get__(
+            self.transformer.text_model.embeddings
+        )
+
+        def encoder_forward(
+            self,
+            inputs_embeds,
+            attention_mask=None,
+            causal_attention_mask=None,
+            output_attentions=None,
+            output_hidden_states=None,
+            return_dict=None,
+        ):
+            output_attentions = (
+                output_attentions
+                if output_attentions is not None
+                else self.config.output_attentions
+            )
+            output_hidden_states = (
+                output_hidden_states
+                if output_hidden_states is not None
+                else self.config.output_hidden_states
+            )
+            return_dict = (
+                return_dict if return_dict is not None else self.config.use_return_dict
+            )
+            encoder_states = () if output_hidden_states else None
+            all_attentions = () if output_attentions else None
+            hidden_states = inputs_embeds
+            for idx, encoder_layer in enumerate(self.layers):
+                if output_hidden_states:
+                    encoder_states = encoder_states + (hidden_states,)
+                layer_outputs = encoder_layer(
+                    hidden_states,
+                    attention_mask,
+                    causal_attention_mask,
+                    output_attentions=output_attentions,
+                )
+                hidden_states = layer_outputs[0]
+                if output_attentions:
+                    all_attentions = all_attentions + (layer_outputs[1],)
+            if output_hidden_states:
+                encoder_states = encoder_states + (hidden_states,)
+            return hidden_states
+
+        self.transformer.text_model.encoder.forward = encoder_forward.__get__(
+            self.transformer.text_model.encoder
+        )
+
+        def text_encoder_forward(
+            self,
+            input_ids=None,
+            attention_mask=None,
+            position_ids=None,
+            output_attentions=None,
+            output_hidden_states=None,
+            return_dict=None,
+            embedding_manager=None,
+        ):
+            output_attentions = (
+                output_attentions
+                if output_attentions is not None
+                else self.config.output_attentions
+            )
+            output_hidden_states = (
+                output_hidden_states
+                if output_hidden_states is not None
+                else self.config.output_hidden_states
+            )
+            return_dict = (
+                return_dict if return_dict is not None else self.config.use_return_dict
+            )
+            if input_ids is None:
+                raise ValueError("You have to specify either input_ids")
+            input_shape = input_ids.size()
+            input_ids = input_ids.view(-1, input_shape[-1])
+            hidden_states = self.embeddings(
+                input_ids=input_ids,
+                position_ids=position_ids,
+                embedding_manager=embedding_manager,
+            )
+            bsz, seq_len = input_shape
+            # CLIP's text model uses causal mask, prepare it here.
+            # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
+            causal_attention_mask = _build_causal_attention_mask(
+                bsz, seq_len, hidden_states.dtype
+            ).to(hidden_states.device)
+            # expand attention_mask
+            if attention_mask is not None:
+                # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+                attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
+            last_hidden_state = self.encoder(
+                inputs_embeds=hidden_states,
+                attention_mask=attention_mask,
+                causal_attention_mask=causal_attention_mask,
+                output_attentions=output_attentions,
+                output_hidden_states=output_hidden_states,
+                return_dict=return_dict,
+            )
+            last_hidden_state = self.final_layer_norm(last_hidden_state)
+            return last_hidden_state
+
+        self.transformer.text_model.forward = text_encoder_forward.__get__(
+            self.transformer.text_model
+        )
+
+        def transformer_forward(
+            self,
+            input_ids=None,
+            attention_mask=None,
+            position_ids=None,
+            output_attentions=None,
+            output_hidden_states=None,
+            return_dict=None,
+            embedding_manager=None,
+        ):
+            return self.text_model(
+                input_ids=input_ids,
+                attention_mask=attention_mask,
+                position_ids=position_ids,
+                output_attentions=output_attentions,
+                output_hidden_states=output_hidden_states,
+                return_dict=return_dict,
+                embedding_manager=embedding_manager,
+            )
+
+        self.transformer.forward = transformer_forward.__get__(self.transformer)
+
+    def freeze(self):
+        self.transformer = self.transformer.eval()
+        for param in self.parameters():
+            param.requires_grad = False
+
+    def forward(self, text, **kwargs):
+        batch_encoding = self.tokenizer(
+            text,
+            truncation=True,
+            max_length=self.max_length,
+            return_length=True,
+            return_overflowing_tokens=False,
+            padding="max_length",
+            return_tensors="pt",
+        )
+        tokens = batch_encoding["input_ids"].to(self.device)
+        z = self.transformer(input_ids=tokens, **kwargs)
+        return z
+
+    def encode(self, text, **kwargs):
+        return self(text, **kwargs)
diff --git a/iopaint/model/anytext/main.py b/iopaint/model/anytext/main.py
new file mode 100644
index 0000000000000000000000000000000000000000..f7b2d2ec984bc80ac8c6edef257a294ccab18875
--- /dev/null
+++ b/iopaint/model/anytext/main.py
@@ -0,0 +1,45 @@
+import cv2
+import os
+
+from anytext_pipeline import AnyTextPipeline
+from utils import save_images
+
+seed = 66273235
+# seed_everything(seed)
+
+pipe = AnyTextPipeline(
+    ckpt_path="/Users/cwq/code/github/IOPaint/iopaint/model/anytext/anytext_v1.1_fp16.ckpt",
+    font_path="/Users/cwq/code/github/AnyText/anytext/font/SourceHanSansSC-Medium.otf",
+    use_fp16=False,
+    device="mps",
+)
+
+img_save_folder = "SaveImages"
+rgb_image = cv2.imread(
+    "/Users/cwq/code/github/AnyText/anytext/example_images/ref7.jpg"
+)[..., ::-1]
+
+masked_image = cv2.imread(
+    "/Users/cwq/code/github/AnyText/anytext/example_images/edit7.png"
+)[..., ::-1]
+
+rgb_image = cv2.resize(rgb_image, (512, 512))
+masked_image = cv2.resize(masked_image, (512, 512))
+
+# results: list of rgb ndarray
+results, rtn_code, rtn_warning = pipe(
+    prompt='A cake with colorful characters that reads "EVERYDAY", best quality, extremely detailed,4k, HD, supper legible text,  clear text edges,  clear strokes, neat writing, no watermarks',
+    negative_prompt="low-res, bad anatomy, extra digit, fewer digits, cropped, worst quality, low quality, watermark, unreadable text, messy words, distorted text, disorganized writing, advertising picture",
+    image=rgb_image,
+    masked_image=masked_image,
+    num_inference_steps=20,
+    strength=1.0,
+    guidance_scale=9.0,
+    height=rgb_image.shape[0],
+    width=rgb_image.shape[1],
+    seed=seed,
+    sort_priority="y",
+)
+if rtn_code >= 0:
+    save_images(results, img_save_folder)
+    print(f"Done, result images are saved in: {img_save_folder}")
diff --git a/iopaint/model/anytext/ocr_recog/common.py b/iopaint/model/anytext/ocr_recog/common.py
new file mode 100644
index 0000000000000000000000000000000000000000..a328bb034a37934b7437893b5c2e42cd3504c17f
--- /dev/null
+++ b/iopaint/model/anytext/ocr_recog/common.py
@@ -0,0 +1,74 @@
+
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class Hswish(nn.Module):
+    def __init__(self, inplace=True):
+        super(Hswish, self).__init__()
+        self.inplace = inplace
+
+    def forward(self, x):
+        return x * F.relu6(x + 3., inplace=self.inplace) / 6.
+
+# out = max(0, min(1, slop*x+offset))
+# paddle.fluid.layers.hard_sigmoid(x, slope=0.2, offset=0.5, name=None)
+class Hsigmoid(nn.Module):
+    def __init__(self, inplace=True):
+        super(Hsigmoid, self).__init__()
+        self.inplace = inplace
+
+    def forward(self, x):
+        # torch: F.relu6(x + 3., inplace=self.inplace) / 6.
+        # paddle: F.relu6(1.2 * x + 3., inplace=self.inplace) / 6.
+        return F.relu6(1.2 * x + 3., inplace=self.inplace) / 6.
+
+class GELU(nn.Module):
+    def __init__(self, inplace=True):
+        super(GELU, self).__init__()
+        self.inplace = inplace
+
+    def forward(self, x):
+        return torch.nn.functional.gelu(x)
+
+
+class Swish(nn.Module):
+    def __init__(self, inplace=True):
+        super(Swish, self).__init__()
+        self.inplace = inplace
+
+    def forward(self, x):
+        if self.inplace:
+            x.mul_(torch.sigmoid(x))
+            return x
+        else:
+            return x*torch.sigmoid(x)
+
+
+class Activation(nn.Module):
+    def __init__(self, act_type, inplace=True):
+        super(Activation, self).__init__()
+        act_type = act_type.lower()
+        if act_type == 'relu':
+            self.act = nn.ReLU(inplace=inplace)
+        elif act_type == 'relu6':
+            self.act = nn.ReLU6(inplace=inplace)
+        elif act_type == 'sigmoid':
+            raise NotImplementedError
+        elif act_type == 'hard_sigmoid':
+            self.act = Hsigmoid(inplace)
+        elif act_type == 'hard_swish':
+            self.act = Hswish(inplace=inplace)
+        elif act_type == 'leakyrelu':
+            self.act = nn.LeakyReLU(inplace=inplace)
+        elif act_type == 'gelu':
+            self.act = GELU(inplace=inplace)
+        elif act_type == 'swish':
+            self.act = Swish(inplace=inplace)
+        else:
+            raise NotImplementedError
+
+    def forward(self, inputs):
+        return self.act(inputs)
\ No newline at end of file
diff --git a/iopaint/model/anytext/ocr_recog/en_dict.txt b/iopaint/model/anytext/ocr_recog/en_dict.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7677d31b9d3f08eef2823c2cf051beeab1f0470b
--- /dev/null
+++ b/iopaint/model/anytext/ocr_recog/en_dict.txt
@@ -0,0 +1,95 @@
+0
+1
+2
+3
+4
+5
+6
+7
+8
+9
+:
+;
+<
+=
+>
+?
+@
+A
+B
+C
+D
+E
+F
+G
+H
+I
+J
+K
+L
+M
+N
+O
+P
+Q
+R
+S
+T
+U
+V
+W
+X
+Y
+Z
+[
+\
+]
+^
+_
+`
+a
+b
+c
+d
+e
+f
+g
+h
+i
+j
+k
+l
+m
+n
+o
+p
+q
+r
+s
+t
+u
+v
+w
+x
+y
+z
+{
+|
+}
+~
+!
+"
+#
+$
+%
+&
+'
+(
+)
+*
++
+,
+-
+.
+/
+ 
diff --git a/iopaint/model/controlnet.py b/iopaint/model/controlnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..d52db01926c799a5eada97e75af874363c3dd1cd
--- /dev/null
+++ b/iopaint/model/controlnet.py
@@ -0,0 +1,190 @@
+import PIL.Image
+import cv2
+import torch
+from diffusers import ControlNetModel
+from loguru import logger
+from iopaint.schema import InpaintRequest, ModelType
+
+from .base import DiffusionInpaintModel
+from .helper.controlnet_preprocess import (
+    make_canny_control_image,
+    make_openpose_control_image,
+    make_depth_control_image,
+    make_inpaint_control_image,
+)
+from .helper.cpu_text_encoder import CPUTextEncoderWrapper
+from .original_sd_configs import get_config_files
+from .utils import (
+    get_scheduler,
+    handle_from_pretrained_exceptions,
+    get_torch_dtype,
+    enable_low_mem,
+    is_local_files_only,
+)
+
+
+class ControlNet(DiffusionInpaintModel):
+    name = "controlnet"
+    pad_mod = 8
+    min_size = 512
+
+    @property
+    def lcm_lora_id(self):
+        if self.model_info.model_type in [
+            ModelType.DIFFUSERS_SD,
+            ModelType.DIFFUSERS_SD_INPAINT,
+        ]:
+            return "latent-consistency/lcm-lora-sdv1-5"
+        if self.model_info.model_type in [
+            ModelType.DIFFUSERS_SDXL,
+            ModelType.DIFFUSERS_SDXL_INPAINT,
+        ]:
+            return "latent-consistency/lcm-lora-sdxl"
+        raise NotImplementedError(f"Unsupported controlnet lcm model {self.model_info}")
+
+    def init_model(self, device: torch.device, **kwargs):
+        model_info = kwargs["model_info"]
+        controlnet_method = kwargs["controlnet_method"]
+
+        self.model_info = model_info
+        self.controlnet_method = controlnet_method
+
+        model_kwargs = {
+            **kwargs.get("pipe_components", {}),
+            "local_files_only": is_local_files_only(**kwargs),
+        }
+        self.local_files_only = model_kwargs["local_files_only"]
+
+        disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get(
+            "cpu_offload", False
+        )
+        if disable_nsfw_checker:
+            logger.info("Disable Stable Diffusion Model NSFW checker")
+            model_kwargs.update(
+                dict(
+                    safety_checker=None,
+                    feature_extractor=None,
+                    requires_safety_checker=False,
+                )
+            )
+
+        use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
+        self.torch_dtype = torch_dtype
+
+        if model_info.model_type in [
+            ModelType.DIFFUSERS_SD,
+            ModelType.DIFFUSERS_SD_INPAINT,
+        ]:
+            from diffusers import (
+                StableDiffusionControlNetInpaintPipeline as PipeClass,
+            )
+        elif model_info.model_type in [
+            ModelType.DIFFUSERS_SDXL,
+            ModelType.DIFFUSERS_SDXL_INPAINT,
+        ]:
+            from diffusers import (
+                StableDiffusionXLControlNetInpaintPipeline as PipeClass,
+            )
+
+        controlnet = ControlNetModel.from_pretrained(
+            pretrained_model_name_or_path=controlnet_method,
+            resume_download=True,
+            local_files_only=model_kwargs["local_files_only"],
+            torch_dtype=self.torch_dtype,
+        )
+        if model_info.is_single_file_diffusers:
+            if self.model_info.model_type == ModelType.DIFFUSERS_SD:
+                model_kwargs["num_in_channels"] = 4
+            else:
+                model_kwargs["num_in_channels"] = 9
+
+            self.model = PipeClass.from_single_file(
+                model_info.path,
+                controlnet=controlnet,
+                load_safety_checker=not disable_nsfw_checker,
+                torch_dtype=torch_dtype,
+                config_files=get_config_files(),
+                **model_kwargs,
+            )
+        else:
+            self.model = handle_from_pretrained_exceptions(
+                PipeClass.from_pretrained,
+                pretrained_model_name_or_path=model_info.path,
+                controlnet=controlnet,
+                variant="fp16",
+                torch_dtype=torch_dtype,
+                **model_kwargs,
+            )
+
+        enable_low_mem(self.model, kwargs.get("low_mem", False))
+
+        if kwargs.get("cpu_offload", False) and use_gpu:
+            logger.info("Enable sequential cpu offload")
+            self.model.enable_sequential_cpu_offload(gpu_id=0)
+        else:
+            self.model = self.model.to(device)
+            if kwargs["sd_cpu_textencoder"]:
+                logger.info("Run Stable Diffusion TextEncoder on CPU")
+                self.model.text_encoder = CPUTextEncoderWrapper(
+                    self.model.text_encoder, torch_dtype
+                )
+
+        self.callback = kwargs.pop("callback", None)
+
+    def switch_controlnet_method(self, new_method: str):
+        self.controlnet_method = new_method
+        controlnet = ControlNetModel.from_pretrained(
+            new_method,
+            resume_download=True,
+            local_files_only=self.local_files_only,
+            torch_dtype=self.torch_dtype,
+        ).to(self.model.device)
+        self.model.controlnet = controlnet
+
+    def _get_control_image(self, image, mask):
+        if "canny" in self.controlnet_method:
+            control_image = make_canny_control_image(image)
+        elif "openpose" in self.controlnet_method:
+            control_image = make_openpose_control_image(image)
+        elif "depth" in self.controlnet_method:
+            control_image = make_depth_control_image(image)
+        elif "inpaint" in self.controlnet_method:
+            control_image = make_inpaint_control_image(image, mask)
+        else:
+            raise NotImplementedError(f"{self.controlnet_method} not implemented")
+        return control_image
+
+    def forward(self, image, mask, config: InpaintRequest):
+        """Input image and output image have same size
+        image: [H, W, C] RGB
+        mask: [H, W, 1] 255 means area to repaint
+        return: BGR IMAGE
+        """
+        scheduler_config = self.model.scheduler.config
+        scheduler = get_scheduler(config.sd_sampler, scheduler_config)
+        self.model.scheduler = scheduler
+
+        img_h, img_w = image.shape[:2]
+        control_image = self._get_control_image(image, mask)
+        mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
+        image = PIL.Image.fromarray(image)
+
+        output = self.model(
+            image=image,
+            mask_image=mask_image,
+            control_image=control_image,
+            prompt=config.prompt,
+            negative_prompt=config.negative_prompt,
+            num_inference_steps=config.sd_steps,
+            guidance_scale=config.sd_guidance_scale,
+            output_type="np",
+            callback_on_step_end=self.callback,
+            height=img_h,
+            width=img_w,
+            generator=torch.manual_seed(config.sd_seed),
+            controlnet_conditioning_scale=config.controlnet_conditioning_scale,
+        ).images[0]
+
+        output = (output * 255).round().astype("uint8")
+        output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
+        return output
diff --git a/iopaint/model/ddim_sampler.py b/iopaint/model/ddim_sampler.py
new file mode 100644
index 0000000000000000000000000000000000000000..a3f44fd4146aa3a5388bbfd4dd51a90f9afc91df
--- /dev/null
+++ b/iopaint/model/ddim_sampler.py
@@ -0,0 +1,193 @@
+import torch
+import numpy as np
+from tqdm import tqdm
+
+from .utils import make_ddim_timesteps, make_ddim_sampling_parameters, noise_like
+
+from loguru import logger
+
+
+class DDIMSampler(object):
+    def __init__(self, model, schedule="linear"):
+        super().__init__()
+        self.model = model
+        self.ddpm_num_timesteps = model.num_timesteps
+        self.schedule = schedule
+
+    def register_buffer(self, name, attr):
+        setattr(self, name, attr)
+
+    def make_schedule(
+        self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
+    ):
+        self.ddim_timesteps = make_ddim_timesteps(
+            ddim_discr_method=ddim_discretize,
+            num_ddim_timesteps=ddim_num_steps,
+            # array([1])
+            num_ddpm_timesteps=self.ddpm_num_timesteps,
+            verbose=verbose,
+        )
+        alphas_cumprod = self.model.alphas_cumprod  # torch.Size([1000])
+        assert (
+                alphas_cumprod.shape[0] == self.ddpm_num_timesteps
+        ), "alphas have to be defined for each timestep"
+        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+        self.register_buffer("betas", to_torch(self.model.betas))
+        self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
+        self.register_buffer(
+            "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
+        )
+
+        # calculations for diffusion q(x_t | x_{t-1}) and others
+        self.register_buffer(
+            "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
+        )
+        self.register_buffer(
+            "sqrt_one_minus_alphas_cumprod",
+            to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
+        )
+        self.register_buffer(
+            "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
+        )
+        self.register_buffer(
+            "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
+        )
+        self.register_buffer(
+            "sqrt_recipm1_alphas_cumprod",
+            to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
+        )
+
+        # ddim sampling parameters
+        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
+            alphacums=alphas_cumprod.cpu(),
+            ddim_timesteps=self.ddim_timesteps,
+            eta=ddim_eta,
+            verbose=verbose,
+        )
+        self.register_buffer("ddim_sigmas", ddim_sigmas)
+        self.register_buffer("ddim_alphas", ddim_alphas)
+        self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
+        self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
+        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+            (1 - self.alphas_cumprod_prev)
+            / (1 - self.alphas_cumprod)
+            * (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
+        )
+        self.register_buffer(
+            "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
+        )
+
+    @torch.no_grad()
+    def sample(self, steps, conditioning, batch_size, shape):
+        self.make_schedule(ddim_num_steps=steps, ddim_eta=0, verbose=False)
+        # sampling
+        C, H, W = shape
+        size = (batch_size, C, H, W)
+
+        # samples: 1,3,128,128
+        return self.ddim_sampling(
+            conditioning,
+            size,
+            quantize_denoised=False,
+            ddim_use_original_steps=False,
+            noise_dropout=0,
+            temperature=1.0,
+        )
+
+    @torch.no_grad()
+    def ddim_sampling(
+        self,
+        cond,
+        shape,
+        ddim_use_original_steps=False,
+        quantize_denoised=False,
+        temperature=1.0,
+        noise_dropout=0.0,
+    ):
+        device = self.model.betas.device
+        b = shape[0]
+        img = torch.randn(shape, device=device, dtype=cond.dtype)
+        timesteps = (
+            self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+        )
+
+        time_range = (
+            reversed(range(0, timesteps))
+            if ddim_use_original_steps
+            else np.flip(timesteps)
+        )
+        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+        logger.info(f"Running DDIM Sampling with {total_steps} timesteps")
+
+        iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
+
+        for i, step in enumerate(iterator):
+            index = total_steps - i - 1
+            ts = torch.full((b,), step, device=device, dtype=torch.long)
+
+            outs = self.p_sample_ddim(
+                img,
+                cond,
+                ts,
+                index=index,
+                use_original_steps=ddim_use_original_steps,
+                quantize_denoised=quantize_denoised,
+                temperature=temperature,
+                noise_dropout=noise_dropout,
+            )
+            img, _ = outs
+
+        return img
+
+    @torch.no_grad()
+    def p_sample_ddim(
+        self,
+        x,
+        c,
+        t,
+        index,
+        repeat_noise=False,
+        use_original_steps=False,
+        quantize_denoised=False,
+        temperature=1.0,
+        noise_dropout=0.0,
+    ):
+        b, *_, device = *x.shape, x.device
+        e_t = self.model.apply_model(x, t, c)
+
+        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+        alphas_prev = (
+            self.model.alphas_cumprod_prev
+            if use_original_steps
+            else self.ddim_alphas_prev
+        )
+        sqrt_one_minus_alphas = (
+            self.model.sqrt_one_minus_alphas_cumprod
+            if use_original_steps
+            else self.ddim_sqrt_one_minus_alphas
+        )
+        sigmas = (
+            self.model.ddim_sigmas_for_original_num_steps
+            if use_original_steps
+            else self.ddim_sigmas
+        )
+        # select parameters corresponding to the currently considered timestep
+        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+        sqrt_one_minus_at = torch.full(
+            (b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
+        )
+
+        # current prediction for x_0
+        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+        if quantize_denoised:  # 没用
+            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+        # direction pointing to x_t
+        dir_xt = (1.0 - a_prev - sigma_t ** 2).sqrt() * e_t
+        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+        if noise_dropout > 0.0:  # 没用
+            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+        return x_prev, pred_x0
diff --git a/iopaint/model/fcf.py b/iopaint/model/fcf.py
new file mode 100644
index 0000000000000000000000000000000000000000..a6f2d4222a35f4136fde04f2e41b3a9126bd84d3
--- /dev/null
+++ b/iopaint/model/fcf.py
@@ -0,0 +1,1737 @@
+import os
+import random
+
+import cv2
+import torch
+import numpy as np
+import torch.fft as fft
+
+from iopaint.schema import InpaintRequest
+
+from iopaint.helper import (
+    load_model,
+    get_cache_path_by_url,
+    norm_img,
+    boxes_from_mask,
+    resize_max_size,
+    download_model,
+)
+from .base import InpaintModel
+from torch import conv2d, nn
+import torch.nn.functional as F
+
+from .utils import (
+    setup_filter,
+    _parse_scaling,
+    _parse_padding,
+    Conv2dLayer,
+    FullyConnectedLayer,
+    MinibatchStdLayer,
+    activation_funcs,
+    conv2d_resample,
+    bias_act,
+    upsample2d,
+    normalize_2nd_moment,
+    downsample2d,
+)
+
+
+def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl="cuda"):
+    assert isinstance(x, torch.Tensor)
+    return _upfirdn2d_ref(
+        x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain
+    )
+
+
+def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
+    """Slow reference implementation of `upfirdn2d()` using standard PyTorch ops."""
+    # Validate arguments.
+    assert isinstance(x, torch.Tensor) and x.ndim == 4
+    if f is None:
+        f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
+    assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
+    assert f.dtype == torch.float32 and not f.requires_grad
+    batch_size, num_channels, in_height, in_width = x.shape
+    upx, upy = _parse_scaling(up)
+    downx, downy = _parse_scaling(down)
+    padx0, padx1, pady0, pady1 = _parse_padding(padding)
+
+    # Upsample by inserting zeros.
+    x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1])
+    x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
+    x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx])
+
+    # Pad or crop.
+    x = torch.nn.functional.pad(
+        x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)]
+    )
+    x = x[
+        :,
+        :,
+        max(-pady0, 0) : x.shape[2] - max(-pady1, 0),
+        max(-padx0, 0) : x.shape[3] - max(-padx1, 0),
+    ]
+
+    # Setup filter.
+    f = f * (gain ** (f.ndim / 2))
+    f = f.to(x.dtype)
+    if not flip_filter:
+        f = f.flip(list(range(f.ndim)))
+
+    # Convolve with the filter.
+    f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim)
+    if f.ndim == 4:
+        x = conv2d(input=x, weight=f, groups=num_channels)
+    else:
+        x = conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels)
+        x = conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels)
+
+    # Downsample by throwing away pixels.
+    x = x[:, :, ::downy, ::downx]
+    return x
+
+
+class EncoderEpilogue(torch.nn.Module):
+    def __init__(
+        self,
+        in_channels,  # Number of input channels.
+        cmap_dim,  # Dimensionality of mapped conditioning label, 0 = no label.
+        z_dim,  # Output Latent (Z) dimensionality.
+        resolution,  # Resolution of this block.
+        img_channels,  # Number of input color channels.
+        architecture="resnet",  # Architecture: 'orig', 'skip', 'resnet'.
+        mbstd_group_size=4,  # Group size for the minibatch standard deviation layer, None = entire minibatch.
+        mbstd_num_channels=1,  # Number of features for the minibatch standard deviation layer, 0 = disable.
+        activation="lrelu",  # Activation function: 'relu', 'lrelu', etc.
+        conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
+    ):
+        assert architecture in ["orig", "skip", "resnet"]
+        super().__init__()
+        self.in_channels = in_channels
+        self.cmap_dim = cmap_dim
+        self.resolution = resolution
+        self.img_channels = img_channels
+        self.architecture = architecture
+
+        if architecture == "skip":
+            self.fromrgb = Conv2dLayer(
+                self.img_channels, in_channels, kernel_size=1, activation=activation
+            )
+        self.mbstd = (
+            MinibatchStdLayer(
+                group_size=mbstd_group_size, num_channels=mbstd_num_channels
+            )
+            if mbstd_num_channels > 0
+            else None
+        )
+        self.conv = Conv2dLayer(
+            in_channels + mbstd_num_channels,
+            in_channels,
+            kernel_size=3,
+            activation=activation,
+            conv_clamp=conv_clamp,
+        )
+        self.fc = FullyConnectedLayer(
+            in_channels * (resolution**2), z_dim, activation=activation
+        )
+        self.dropout = torch.nn.Dropout(p=0.5)
+
+    def forward(self, x, cmap, force_fp32=False):
+        _ = force_fp32  # unused
+        dtype = torch.float32
+        memory_format = torch.contiguous_format
+
+        # FromRGB.
+        x = x.to(dtype=dtype, memory_format=memory_format)
+
+        # Main layers.
+        if self.mbstd is not None:
+            x = self.mbstd(x)
+        const_e = self.conv(x)
+        x = self.fc(const_e.flatten(1))
+        x = self.dropout(x)
+
+        # Conditioning.
+        if self.cmap_dim > 0:
+            x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
+
+        assert x.dtype == dtype
+        return x, const_e
+
+
+class EncoderBlock(torch.nn.Module):
+    def __init__(
+        self,
+        in_channels,  # Number of input channels, 0 = first block.
+        tmp_channels,  # Number of intermediate channels.
+        out_channels,  # Number of output channels.
+        resolution,  # Resolution of this block.
+        img_channels,  # Number of input color channels.
+        first_layer_idx,  # Index of the first layer.
+        architecture="skip",  # Architecture: 'orig', 'skip', 'resnet'.
+        activation="lrelu",  # Activation function: 'relu', 'lrelu', etc.
+        resample_filter=[
+            1,
+            3,
+            3,
+            1,
+        ],  # Low-pass filter to apply when resampling activations.
+        conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
+        use_fp16=False,  # Use FP16 for this block?
+        fp16_channels_last=False,  # Use channels-last memory format with FP16?
+        freeze_layers=0,  # Freeze-D: Number of layers to freeze.
+    ):
+        assert in_channels in [0, tmp_channels]
+        assert architecture in ["orig", "skip", "resnet"]
+        super().__init__()
+        self.in_channels = in_channels
+        self.resolution = resolution
+        self.img_channels = img_channels + 1
+        self.first_layer_idx = first_layer_idx
+        self.architecture = architecture
+        self.use_fp16 = use_fp16
+        self.channels_last = use_fp16 and fp16_channels_last
+        self.register_buffer("resample_filter", setup_filter(resample_filter))
+
+        self.num_layers = 0
+
+        def trainable_gen():
+            while True:
+                layer_idx = self.first_layer_idx + self.num_layers
+                trainable = layer_idx >= freeze_layers
+                self.num_layers += 1
+                yield trainable
+
+        trainable_iter = trainable_gen()
+
+        if in_channels == 0:
+            self.fromrgb = Conv2dLayer(
+                self.img_channels,
+                tmp_channels,
+                kernel_size=1,
+                activation=activation,
+                trainable=next(trainable_iter),
+                conv_clamp=conv_clamp,
+                channels_last=self.channels_last,
+            )
+
+        self.conv0 = Conv2dLayer(
+            tmp_channels,
+            tmp_channels,
+            kernel_size=3,
+            activation=activation,
+            trainable=next(trainable_iter),
+            conv_clamp=conv_clamp,
+            channels_last=self.channels_last,
+        )
+
+        self.conv1 = Conv2dLayer(
+            tmp_channels,
+            out_channels,
+            kernel_size=3,
+            activation=activation,
+            down=2,
+            trainable=next(trainable_iter),
+            resample_filter=resample_filter,
+            conv_clamp=conv_clamp,
+            channels_last=self.channels_last,
+        )
+
+        if architecture == "resnet":
+            self.skip = Conv2dLayer(
+                tmp_channels,
+                out_channels,
+                kernel_size=1,
+                bias=False,
+                down=2,
+                trainable=next(trainable_iter),
+                resample_filter=resample_filter,
+                channels_last=self.channels_last,
+            )
+
+    def forward(self, x, img, force_fp32=False):
+        # dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
+        dtype = torch.float32
+        memory_format = (
+            torch.channels_last
+            if self.channels_last and not force_fp32
+            else torch.contiguous_format
+        )
+
+        # Input.
+        if x is not None:
+            x = x.to(dtype=dtype, memory_format=memory_format)
+
+        # FromRGB.
+        if self.in_channels == 0:
+            img = img.to(dtype=dtype, memory_format=memory_format)
+            y = self.fromrgb(img)
+            x = x + y if x is not None else y
+            img = (
+                downsample2d(img, self.resample_filter)
+                if self.architecture == "skip"
+                else None
+            )
+
+        # Main layers.
+        if self.architecture == "resnet":
+            y = self.skip(x, gain=np.sqrt(0.5))
+            x = self.conv0(x)
+            feat = x.clone()
+            x = self.conv1(x, gain=np.sqrt(0.5))
+            x = y.add_(x)
+        else:
+            x = self.conv0(x)
+            feat = x.clone()
+            x = self.conv1(x)
+
+        assert x.dtype == dtype
+        return x, img, feat
+
+
+class EncoderNetwork(torch.nn.Module):
+    def __init__(
+        self,
+        c_dim,  # Conditioning label (C) dimensionality.
+        z_dim,  # Input latent (Z) dimensionality.
+        img_resolution,  # Input resolution.
+        img_channels,  # Number of input color channels.
+        architecture="orig",  # Architecture: 'orig', 'skip', 'resnet'.
+        channel_base=16384,  # Overall multiplier for the number of channels.
+        channel_max=512,  # Maximum number of channels in any layer.
+        num_fp16_res=0,  # Use FP16 for the N highest resolutions.
+        conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
+        cmap_dim=None,  # Dimensionality of mapped conditioning label, None = default.
+        block_kwargs={},  # Arguments for DiscriminatorBlock.
+        mapping_kwargs={},  # Arguments for MappingNetwork.
+        epilogue_kwargs={},  # Arguments for EncoderEpilogue.
+    ):
+        super().__init__()
+        self.c_dim = c_dim
+        self.z_dim = z_dim
+        self.img_resolution = img_resolution
+        self.img_resolution_log2 = int(np.log2(img_resolution))
+        self.img_channels = img_channels
+        self.block_resolutions = [
+            2**i for i in range(self.img_resolution_log2, 2, -1)
+        ]
+        channels_dict = {
+            res: min(channel_base // res, channel_max)
+            for res in self.block_resolutions + [4]
+        }
+        fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
+
+        if cmap_dim is None:
+            cmap_dim = channels_dict[4]
+        if c_dim == 0:
+            cmap_dim = 0
+
+        common_kwargs = dict(
+            img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp
+        )
+        cur_layer_idx = 0
+        for res in self.block_resolutions:
+            in_channels = channels_dict[res] if res < img_resolution else 0
+            tmp_channels = channels_dict[res]
+            out_channels = channels_dict[res // 2]
+            use_fp16 = res >= fp16_resolution
+            use_fp16 = False
+            block = EncoderBlock(
+                in_channels,
+                tmp_channels,
+                out_channels,
+                resolution=res,
+                first_layer_idx=cur_layer_idx,
+                use_fp16=use_fp16,
+                **block_kwargs,
+                **common_kwargs,
+            )
+            setattr(self, f"b{res}", block)
+            cur_layer_idx += block.num_layers
+        if c_dim > 0:
+            self.mapping = MappingNetwork(
+                z_dim=0,
+                c_dim=c_dim,
+                w_dim=cmap_dim,
+                num_ws=None,
+                w_avg_beta=None,
+                **mapping_kwargs,
+            )
+        self.b4 = EncoderEpilogue(
+            channels_dict[4],
+            cmap_dim=cmap_dim,
+            z_dim=z_dim * 2,
+            resolution=4,
+            **epilogue_kwargs,
+            **common_kwargs,
+        )
+
+    def forward(self, img, c, **block_kwargs):
+        x = None
+        feats = {}
+        for res in self.block_resolutions:
+            block = getattr(self, f"b{res}")
+            x, img, feat = block(x, img, **block_kwargs)
+            feats[res] = feat
+
+        cmap = None
+        if self.c_dim > 0:
+            cmap = self.mapping(None, c)
+        x, const_e = self.b4(x, cmap)
+        feats[4] = const_e
+
+        B, _ = x.shape
+        z = torch.zeros(
+            (B, self.z_dim), requires_grad=False, dtype=x.dtype, device=x.device
+        )  ## Noise for Co-Modulation
+        return x, z, feats
+
+
+def fma(a, b, c):  # => a * b + c
+    return _FusedMultiplyAdd.apply(a, b, c)
+
+
+class _FusedMultiplyAdd(torch.autograd.Function):  # a * b + c
+    @staticmethod
+    def forward(ctx, a, b, c):  # pylint: disable=arguments-differ
+        out = torch.addcmul(c, a, b)
+        ctx.save_for_backward(a, b)
+        ctx.c_shape = c.shape
+        return out
+
+    @staticmethod
+    def backward(ctx, dout):  # pylint: disable=arguments-differ
+        a, b = ctx.saved_tensors
+        c_shape = ctx.c_shape
+        da = None
+        db = None
+        dc = None
+
+        if ctx.needs_input_grad[0]:
+            da = _unbroadcast(dout * b, a.shape)
+
+        if ctx.needs_input_grad[1]:
+            db = _unbroadcast(dout * a, b.shape)
+
+        if ctx.needs_input_grad[2]:
+            dc = _unbroadcast(dout, c_shape)
+
+        return da, db, dc
+
+
+def _unbroadcast(x, shape):
+    extra_dims = x.ndim - len(shape)
+    assert extra_dims >= 0
+    dim = [
+        i
+        for i in range(x.ndim)
+        if x.shape[i] > 1 and (i < extra_dims or shape[i - extra_dims] == 1)
+    ]
+    if len(dim):
+        x = x.sum(dim=dim, keepdim=True)
+    if extra_dims:
+        x = x.reshape(-1, *x.shape[extra_dims + 1 :])
+    assert x.shape == shape
+    return x
+
+
+def modulated_conv2d(
+    x,  # Input tensor of shape [batch_size, in_channels, in_height, in_width].
+    weight,  # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width].
+    styles,  # Modulation coefficients of shape [batch_size, in_channels].
+    noise=None,  # Optional noise tensor to add to the output activations.
+    up=1,  # Integer upsampling factor.
+    down=1,  # Integer downsampling factor.
+    padding=0,  # Padding with respect to the upsampled image.
+    resample_filter=None,
+    # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter().
+    demodulate=True,  # Apply weight demodulation?
+    flip_weight=True,  # False = convolution, True = correlation (matches torch.nn.functional.conv2d).
+    fused_modconv=True,  # Perform modulation, convolution, and demodulation as a single fused operation?
+):
+    batch_size = x.shape[0]
+    out_channels, in_channels, kh, kw = weight.shape
+
+    # Pre-normalize inputs to avoid FP16 overflow.
+    if x.dtype == torch.float16 and demodulate:
+        weight = weight * (
+            1
+            / np.sqrt(in_channels * kh * kw)
+            / weight.norm(float("inf"), dim=[1, 2, 3], keepdim=True)
+        )  # max_Ikk
+        styles = styles / styles.norm(float("inf"), dim=1, keepdim=True)  # max_I
+
+    # Calculate per-sample weights and demodulation coefficients.
+    w = None
+    dcoefs = None
+    if demodulate or fused_modconv:
+        w = weight.unsqueeze(0)  # [NOIkk]
+        w = w * styles.reshape(batch_size, 1, -1, 1, 1)  # [NOIkk]
+    if demodulate:
+        dcoefs = (w.square().sum(dim=[2, 3, 4]) + 1e-8).rsqrt()  # [NO]
+    if demodulate and fused_modconv:
+        w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1)  # [NOIkk]
+    # Execute by scaling the activations before and after the convolution.
+    if not fused_modconv:
+        x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1)
+        x = conv2d_resample.conv2d_resample(
+            x=x,
+            w=weight.to(x.dtype),
+            f=resample_filter,
+            up=up,
+            down=down,
+            padding=padding,
+            flip_weight=flip_weight,
+        )
+        if demodulate and noise is not None:
+            x = fma(
+                x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype)
+            )
+        elif demodulate:
+            x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1)
+        elif noise is not None:
+            x = x.add_(noise.to(x.dtype))
+        return x
+
+    # Execute as one fused op using grouped convolution.
+    batch_size = int(batch_size)
+    x = x.reshape(1, -1, *x.shape[2:])
+    w = w.reshape(-1, in_channels, kh, kw)
+    x = conv2d_resample(
+        x=x,
+        w=w.to(x.dtype),
+        f=resample_filter,
+        up=up,
+        down=down,
+        padding=padding,
+        groups=batch_size,
+        flip_weight=flip_weight,
+    )
+    x = x.reshape(batch_size, -1, *x.shape[2:])
+    if noise is not None:
+        x = x.add_(noise)
+    return x
+
+
+class SynthesisLayer(torch.nn.Module):
+    def __init__(
+        self,
+        in_channels,  # Number of input channels.
+        out_channels,  # Number of output channels.
+        w_dim,  # Intermediate latent (W) dimensionality.
+        resolution,  # Resolution of this layer.
+        kernel_size=3,  # Convolution kernel size.
+        up=1,  # Integer upsampling factor.
+        use_noise=True,  # Enable noise input?
+        activation="lrelu",  # Activation function: 'relu', 'lrelu', etc.
+        resample_filter=[
+            1,
+            3,
+            3,
+            1,
+        ],  # Low-pass filter to apply when resampling activations.
+        conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
+        channels_last=False,  # Use channels_last format for the weights?
+    ):
+        super().__init__()
+        self.resolution = resolution
+        self.up = up
+        self.use_noise = use_noise
+        self.activation = activation
+        self.conv_clamp = conv_clamp
+        self.register_buffer("resample_filter", setup_filter(resample_filter))
+        self.padding = kernel_size // 2
+        self.act_gain = activation_funcs[activation].def_gain
+
+        self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
+        memory_format = (
+            torch.channels_last if channels_last else torch.contiguous_format
+        )
+        self.weight = torch.nn.Parameter(
+            torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(
+                memory_format=memory_format
+            )
+        )
+        if use_noise:
+            self.register_buffer("noise_const", torch.randn([resolution, resolution]))
+            self.noise_strength = torch.nn.Parameter(torch.zeros([]))
+        self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
+
+    def forward(self, x, w, noise_mode="none", fused_modconv=True, gain=1):
+        assert noise_mode in ["random", "const", "none"]
+        in_resolution = self.resolution // self.up
+        styles = self.affine(w)
+
+        noise = None
+        if self.use_noise and noise_mode == "random":
+            noise = (
+                torch.randn(
+                    [x.shape[0], 1, self.resolution, self.resolution], device=x.device
+                )
+                * self.noise_strength
+            )
+        if self.use_noise and noise_mode == "const":
+            noise = self.noise_const * self.noise_strength
+
+        flip_weight = self.up == 1  # slightly faster
+        x = modulated_conv2d(
+            x=x,
+            weight=self.weight,
+            styles=styles,
+            noise=noise,
+            up=self.up,
+            padding=self.padding,
+            resample_filter=self.resample_filter,
+            flip_weight=flip_weight,
+            fused_modconv=fused_modconv,
+        )
+
+        act_gain = self.act_gain * gain
+        act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
+        x = F.leaky_relu(x, negative_slope=0.2, inplace=False)
+        if act_gain != 1:
+            x = x * act_gain
+        if act_clamp is not None:
+            x = x.clamp(-act_clamp, act_clamp)
+        return x
+
+
+class ToRGBLayer(torch.nn.Module):
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        w_dim,
+        kernel_size=1,
+        conv_clamp=None,
+        channels_last=False,
+    ):
+        super().__init__()
+        self.conv_clamp = conv_clamp
+        self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
+        memory_format = (
+            torch.channels_last if channels_last else torch.contiguous_format
+        )
+        self.weight = torch.nn.Parameter(
+            torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(
+                memory_format=memory_format
+            )
+        )
+        self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
+        self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2))
+
+    def forward(self, x, w, fused_modconv=True):
+        styles = self.affine(w) * self.weight_gain
+        x = modulated_conv2d(
+            x=x,
+            weight=self.weight,
+            styles=styles,
+            demodulate=False,
+            fused_modconv=fused_modconv,
+        )
+        x = bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp)
+        return x
+
+
+class SynthesisForeword(torch.nn.Module):
+    def __init__(
+        self,
+        z_dim,  # Output Latent (Z) dimensionality.
+        resolution,  # Resolution of this block.
+        in_channels,
+        img_channels,  # Number of input color channels.
+        architecture="skip",  # Architecture: 'orig', 'skip', 'resnet'.
+        activation="lrelu",  # Activation function: 'relu', 'lrelu', etc.
+    ):
+        super().__init__()
+        self.in_channels = in_channels
+        self.z_dim = z_dim
+        self.resolution = resolution
+        self.img_channels = img_channels
+        self.architecture = architecture
+
+        self.fc = FullyConnectedLayer(
+            self.z_dim, (self.z_dim // 2) * 4 * 4, activation=activation
+        )
+        self.conv = SynthesisLayer(
+            self.in_channels, self.in_channels, w_dim=(z_dim // 2) * 3, resolution=4
+        )
+
+        if architecture == "skip":
+            self.torgb = ToRGBLayer(
+                self.in_channels,
+                self.img_channels,
+                kernel_size=1,
+                w_dim=(z_dim // 2) * 3,
+            )
+
+    def forward(self, x, ws, feats, img, force_fp32=False):
+        _ = force_fp32  # unused
+        dtype = torch.float32
+        memory_format = torch.contiguous_format
+
+        x_global = x.clone()
+        # ToRGB.
+        x = self.fc(x)
+        x = x.view(-1, self.z_dim // 2, 4, 4)
+        x = x.to(dtype=dtype, memory_format=memory_format)
+
+        # Main layers.
+        x_skip = feats[4].clone()
+        x = x + x_skip
+
+        mod_vector = []
+        mod_vector.append(ws[:, 0])
+        mod_vector.append(x_global.clone())
+        mod_vector = torch.cat(mod_vector, dim=1)
+
+        x = self.conv(x, mod_vector)
+
+        mod_vector = []
+        mod_vector.append(ws[:, 2 * 2 - 3])
+        mod_vector.append(x_global.clone())
+        mod_vector = torch.cat(mod_vector, dim=1)
+
+        if self.architecture == "skip":
+            img = self.torgb(x, mod_vector)
+            img = img.to(dtype=torch.float32, memory_format=torch.contiguous_format)
+
+        assert x.dtype == dtype
+        return x, img
+
+
+class SELayer(nn.Module):
+    def __init__(self, channel, reduction=16):
+        super(SELayer, self).__init__()
+        self.avg_pool = nn.AdaptiveAvgPool2d(1)
+        self.fc = nn.Sequential(
+            nn.Linear(channel, channel // reduction, bias=False),
+            nn.ReLU(inplace=False),
+            nn.Linear(channel // reduction, channel, bias=False),
+            nn.Sigmoid(),
+        )
+
+    def forward(self, x):
+        b, c, _, _ = x.size()
+        y = self.avg_pool(x).view(b, c)
+        y = self.fc(y).view(b, c, 1, 1)
+        res = x * y.expand_as(x)
+        return res
+
+
+class FourierUnit(nn.Module):
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        groups=1,
+        spatial_scale_factor=None,
+        spatial_scale_mode="bilinear",
+        spectral_pos_encoding=False,
+        use_se=False,
+        se_kwargs=None,
+        ffc3d=False,
+        fft_norm="ortho",
+    ):
+        # bn_layer not used
+        super(FourierUnit, self).__init__()
+        self.groups = groups
+
+        self.conv_layer = torch.nn.Conv2d(
+            in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
+            out_channels=out_channels * 2,
+            kernel_size=1,
+            stride=1,
+            padding=0,
+            groups=self.groups,
+            bias=False,
+        )
+        self.relu = torch.nn.ReLU(inplace=False)
+
+        # squeeze and excitation block
+        self.use_se = use_se
+        if use_se:
+            if se_kwargs is None:
+                se_kwargs = {}
+            self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)
+
+        self.spatial_scale_factor = spatial_scale_factor
+        self.spatial_scale_mode = spatial_scale_mode
+        self.spectral_pos_encoding = spectral_pos_encoding
+        self.ffc3d = ffc3d
+        self.fft_norm = fft_norm
+
+    def forward(self, x):
+        batch = x.shape[0]
+
+        if self.spatial_scale_factor is not None:
+            orig_size = x.shape[-2:]
+            x = F.interpolate(
+                x,
+                scale_factor=self.spatial_scale_factor,
+                mode=self.spatial_scale_mode,
+                align_corners=False,
+            )
+
+        r_size = x.size()
+        # (batch, c, h, w/2+1, 2)
+        fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
+        ffted = fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
+        ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
+        ffted = ffted.permute(0, 1, 4, 2, 3).contiguous()  # (batch, c, 2, h, w/2+1)
+        ffted = ffted.view(
+            (
+                batch,
+                -1,
+            )
+            + ffted.size()[3:]
+        )
+
+        if self.spectral_pos_encoding:
+            height, width = ffted.shape[-2:]
+            coords_vert = (
+                torch.linspace(0, 1, height)[None, None, :, None]
+                .expand(batch, 1, height, width)
+                .to(ffted)
+            )
+            coords_hor = (
+                torch.linspace(0, 1, width)[None, None, None, :]
+                .expand(batch, 1, height, width)
+                .to(ffted)
+            )
+            ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)
+
+        if self.use_se:
+            ffted = self.se(ffted)
+
+        ffted = self.conv_layer(ffted)  # (batch, c*2, h, w/2+1)
+        ffted = self.relu(ffted)
+
+        ffted = (
+            ffted.view(
+                (
+                    batch,
+                    -1,
+                    2,
+                )
+                + ffted.size()[2:]
+            )
+            .permute(0, 1, 3, 4, 2)
+            .contiguous()
+        )  # (batch,c, t, h, w/2+1, 2)
+        ffted = torch.complex(ffted[..., 0], ffted[..., 1])
+
+        ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
+        output = torch.fft.irfftn(
+            ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm
+        )
+
+        if self.spatial_scale_factor is not None:
+            output = F.interpolate(
+                output,
+                size=orig_size,
+                mode=self.spatial_scale_mode,
+                align_corners=False,
+            )
+
+        return output
+
+
+class SpectralTransform(nn.Module):
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        stride=1,
+        groups=1,
+        enable_lfu=True,
+        **fu_kwargs,
+    ):
+        # bn_layer not used
+        super(SpectralTransform, self).__init__()
+        self.enable_lfu = enable_lfu
+        if stride == 2:
+            self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
+        else:
+            self.downsample = nn.Identity()
+
+        self.stride = stride
+        self.conv1 = nn.Sequential(
+            nn.Conv2d(
+                in_channels, out_channels // 2, kernel_size=1, groups=groups, bias=False
+            ),
+            # nn.BatchNorm2d(out_channels // 2),
+            nn.ReLU(inplace=True),
+        )
+        self.fu = FourierUnit(out_channels // 2, out_channels // 2, groups, **fu_kwargs)
+        if self.enable_lfu:
+            self.lfu = FourierUnit(out_channels // 2, out_channels // 2, groups)
+        self.conv2 = torch.nn.Conv2d(
+            out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False
+        )
+
+    def forward(self, x):
+        x = self.downsample(x)
+        x = self.conv1(x)
+        output = self.fu(x)
+
+        if self.enable_lfu:
+            n, c, h, w = x.shape
+            split_no = 2
+            split_s = h // split_no
+            xs = torch.cat(
+                torch.split(x[:, : c // 4], split_s, dim=-2), dim=1
+            ).contiguous()
+            xs = torch.cat(torch.split(xs, split_s, dim=-1), dim=1).contiguous()
+            xs = self.lfu(xs)
+            xs = xs.repeat(1, 1, split_no, split_no).contiguous()
+        else:
+            xs = 0
+
+        output = self.conv2(x + output + xs)
+
+        return output
+
+
+class FFC(nn.Module):
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        kernel_size,
+        ratio_gin,
+        ratio_gout,
+        stride=1,
+        padding=0,
+        dilation=1,
+        groups=1,
+        bias=False,
+        enable_lfu=True,
+        padding_type="reflect",
+        gated=False,
+        **spectral_kwargs,
+    ):
+        super(FFC, self).__init__()
+
+        assert stride == 1 or stride == 2, "Stride should be 1 or 2."
+        self.stride = stride
+
+        in_cg = int(in_channels * ratio_gin)
+        in_cl = in_channels - in_cg
+        out_cg = int(out_channels * ratio_gout)
+        out_cl = out_channels - out_cg
+        # groups_g = 1 if groups == 1 else int(groups * ratio_gout)
+        # groups_l = 1 if groups == 1 else groups - groups_g
+
+        self.ratio_gin = ratio_gin
+        self.ratio_gout = ratio_gout
+        self.global_in_num = in_cg
+
+        module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
+        self.convl2l = module(
+            in_cl,
+            out_cl,
+            kernel_size,
+            stride,
+            padding,
+            dilation,
+            groups,
+            bias,
+            padding_mode=padding_type,
+        )
+        module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
+        self.convl2g = module(
+            in_cl,
+            out_cg,
+            kernel_size,
+            stride,
+            padding,
+            dilation,
+            groups,
+            bias,
+            padding_mode=padding_type,
+        )
+        module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
+        self.convg2l = module(
+            in_cg,
+            out_cl,
+            kernel_size,
+            stride,
+            padding,
+            dilation,
+            groups,
+            bias,
+            padding_mode=padding_type,
+        )
+        module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
+        self.convg2g = module(
+            in_cg,
+            out_cg,
+            stride,
+            1 if groups == 1 else groups // 2,
+            enable_lfu,
+            **spectral_kwargs,
+        )
+
+        self.gated = gated
+        module = (
+            nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
+        )
+        self.gate = module(in_channels, 2, 1)
+
+    def forward(self, x, fname=None):
+        x_l, x_g = x if type(x) is tuple else (x, 0)
+        out_xl, out_xg = 0, 0
+
+        if self.gated:
+            total_input_parts = [x_l]
+            if torch.is_tensor(x_g):
+                total_input_parts.append(x_g)
+            total_input = torch.cat(total_input_parts, dim=1)
+
+            gates = torch.sigmoid(self.gate(total_input))
+            g2l_gate, l2g_gate = gates.chunk(2, dim=1)
+        else:
+            g2l_gate, l2g_gate = 1, 1
+
+        spec_x = self.convg2g(x_g)
+
+        if self.ratio_gout != 1:
+            out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
+        if self.ratio_gout != 0:
+            out_xg = self.convl2g(x_l) * l2g_gate + spec_x
+
+        return out_xl, out_xg
+
+
+class FFC_BN_ACT(nn.Module):
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        kernel_size,
+        ratio_gin,
+        ratio_gout,
+        stride=1,
+        padding=0,
+        dilation=1,
+        groups=1,
+        bias=False,
+        norm_layer=nn.SyncBatchNorm,
+        activation_layer=nn.Identity,
+        padding_type="reflect",
+        enable_lfu=True,
+        **kwargs,
+    ):
+        super(FFC_BN_ACT, self).__init__()
+        self.ffc = FFC(
+            in_channels,
+            out_channels,
+            kernel_size,
+            ratio_gin,
+            ratio_gout,
+            stride,
+            padding,
+            dilation,
+            groups,
+            bias,
+            enable_lfu,
+            padding_type=padding_type,
+            **kwargs,
+        )
+        lnorm = nn.Identity if ratio_gout == 1 else norm_layer
+        gnorm = nn.Identity if ratio_gout == 0 else norm_layer
+        global_channels = int(out_channels * ratio_gout)
+        # self.bn_l = lnorm(out_channels - global_channels)
+        # self.bn_g = gnorm(global_channels)
+
+        lact = nn.Identity if ratio_gout == 1 else activation_layer
+        gact = nn.Identity if ratio_gout == 0 else activation_layer
+        self.act_l = lact(inplace=True)
+        self.act_g = gact(inplace=True)
+
+    def forward(self, x, fname=None):
+        x_l, x_g = self.ffc(
+            x,
+            fname=fname,
+        )
+        x_l = self.act_l(x_l)
+        x_g = self.act_g(x_g)
+        return x_l, x_g
+
+
+class FFCResnetBlock(nn.Module):
+    def __init__(
+        self,
+        dim,
+        padding_type,
+        norm_layer,
+        activation_layer=nn.ReLU,
+        dilation=1,
+        spatial_transform_kwargs=None,
+        inline=False,
+        ratio_gin=0.75,
+        ratio_gout=0.75,
+    ):
+        super().__init__()
+        self.conv1 = FFC_BN_ACT(
+            dim,
+            dim,
+            kernel_size=3,
+            padding=dilation,
+            dilation=dilation,
+            norm_layer=norm_layer,
+            activation_layer=activation_layer,
+            padding_type=padding_type,
+            ratio_gin=ratio_gin,
+            ratio_gout=ratio_gout,
+        )
+        self.conv2 = FFC_BN_ACT(
+            dim,
+            dim,
+            kernel_size=3,
+            padding=dilation,
+            dilation=dilation,
+            norm_layer=norm_layer,
+            activation_layer=activation_layer,
+            padding_type=padding_type,
+            ratio_gin=ratio_gin,
+            ratio_gout=ratio_gout,
+        )
+        self.inline = inline
+
+    def forward(self, x, fname=None):
+        if self.inline:
+            x_l, x_g = (
+                x[:, : -self.conv1.ffc.global_in_num],
+                x[:, -self.conv1.ffc.global_in_num :],
+            )
+        else:
+            x_l, x_g = x if type(x) is tuple else (x, 0)
+
+        id_l, id_g = x_l, x_g
+
+        x_l, x_g = self.conv1((x_l, x_g), fname=fname)
+        x_l, x_g = self.conv2((x_l, x_g), fname=fname)
+
+        x_l, x_g = id_l + x_l, id_g + x_g
+        out = x_l, x_g
+        if self.inline:
+            out = torch.cat(out, dim=1)
+        return out
+
+
+class ConcatTupleLayer(nn.Module):
+    def forward(self, x):
+        assert isinstance(x, tuple)
+        x_l, x_g = x
+        assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
+        if not torch.is_tensor(x_g):
+            return x_l
+        return torch.cat(x, dim=1)
+
+
+class FFCBlock(torch.nn.Module):
+    def __init__(
+        self,
+        dim,  # Number of output/input channels.
+        kernel_size,  # Width and height of the convolution kernel.
+        padding,
+        ratio_gin=0.75,
+        ratio_gout=0.75,
+        activation="linear",  # Activation function: 'relu', 'lrelu', etc.
+    ):
+        super().__init__()
+        if activation == "linear":
+            self.activation = nn.Identity
+        else:
+            self.activation = nn.ReLU
+        self.padding = padding
+        self.kernel_size = kernel_size
+        self.ffc_block = FFCResnetBlock(
+            dim=dim,
+            padding_type="reflect",
+            norm_layer=nn.SyncBatchNorm,
+            activation_layer=self.activation,
+            dilation=1,
+            ratio_gin=ratio_gin,
+            ratio_gout=ratio_gout,
+        )
+
+        self.concat_layer = ConcatTupleLayer()
+
+    def forward(self, gen_ft, mask, fname=None):
+        x = gen_ft.float()
+
+        x_l, x_g = (
+            x[:, : -self.ffc_block.conv1.ffc.global_in_num],
+            x[:, -self.ffc_block.conv1.ffc.global_in_num :],
+        )
+        id_l, id_g = x_l, x_g
+
+        x_l, x_g = self.ffc_block((x_l, x_g), fname=fname)
+        x_l, x_g = id_l + x_l, id_g + x_g
+        x = self.concat_layer((x_l, x_g))
+
+        return x + gen_ft.float()
+
+
+class FFCSkipLayer(torch.nn.Module):
+    def __init__(
+        self,
+        dim,  # Number of input/output channels.
+        kernel_size=3,  # Convolution kernel size.
+        ratio_gin=0.75,
+        ratio_gout=0.75,
+    ):
+        super().__init__()
+        self.padding = kernel_size // 2
+
+        self.ffc_act = FFCBlock(
+            dim=dim,
+            kernel_size=kernel_size,
+            activation=nn.ReLU,
+            padding=self.padding,
+            ratio_gin=ratio_gin,
+            ratio_gout=ratio_gout,
+        )
+
+    def forward(self, gen_ft, mask, fname=None):
+        x = self.ffc_act(gen_ft, mask, fname=fname)
+        return x
+
+
+class SynthesisBlock(torch.nn.Module):
+    def __init__(
+        self,
+        in_channels,  # Number of input channels, 0 = first block.
+        out_channels,  # Number of output channels.
+        w_dim,  # Intermediate latent (W) dimensionality.
+        resolution,  # Resolution of this block.
+        img_channels,  # Number of output color channels.
+        is_last,  # Is this the last block?
+        architecture="skip",  # Architecture: 'orig', 'skip', 'resnet'.
+        resample_filter=[
+            1,
+            3,
+            3,
+            1,
+        ],  # Low-pass filter to apply when resampling activations.
+        conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
+        use_fp16=False,  # Use FP16 for this block?
+        fp16_channels_last=False,  # Use channels-last memory format with FP16?
+        **layer_kwargs,  # Arguments for SynthesisLayer.
+    ):
+        assert architecture in ["orig", "skip", "resnet"]
+        super().__init__()
+        self.in_channels = in_channels
+        self.w_dim = w_dim
+        self.resolution = resolution
+        self.img_channels = img_channels
+        self.is_last = is_last
+        self.architecture = architecture
+        self.use_fp16 = use_fp16
+        self.channels_last = use_fp16 and fp16_channels_last
+        self.register_buffer("resample_filter", setup_filter(resample_filter))
+        self.num_conv = 0
+        self.num_torgb = 0
+        self.res_ffc = {4: 0, 8: 0, 16: 0, 32: 1, 64: 1, 128: 1, 256: 1, 512: 1}
+
+        if in_channels != 0 and resolution >= 8:
+            self.ffc_skip = nn.ModuleList()
+            for _ in range(self.res_ffc[resolution]):
+                self.ffc_skip.append(FFCSkipLayer(dim=out_channels))
+
+        if in_channels == 0:
+            self.const = torch.nn.Parameter(
+                torch.randn([out_channels, resolution, resolution])
+            )
+
+        if in_channels != 0:
+            self.conv0 = SynthesisLayer(
+                in_channels,
+                out_channels,
+                w_dim=w_dim * 3,
+                resolution=resolution,
+                up=2,
+                resample_filter=resample_filter,
+                conv_clamp=conv_clamp,
+                channels_last=self.channels_last,
+                **layer_kwargs,
+            )
+            self.num_conv += 1
+
+        self.conv1 = SynthesisLayer(
+            out_channels,
+            out_channels,
+            w_dim=w_dim * 3,
+            resolution=resolution,
+            conv_clamp=conv_clamp,
+            channels_last=self.channels_last,
+            **layer_kwargs,
+        )
+        self.num_conv += 1
+
+        if is_last or architecture == "skip":
+            self.torgb = ToRGBLayer(
+                out_channels,
+                img_channels,
+                w_dim=w_dim * 3,
+                conv_clamp=conv_clamp,
+                channels_last=self.channels_last,
+            )
+            self.num_torgb += 1
+
+        if in_channels != 0 and architecture == "resnet":
+            self.skip = Conv2dLayer(
+                in_channels,
+                out_channels,
+                kernel_size=1,
+                bias=False,
+                up=2,
+                resample_filter=resample_filter,
+                channels_last=self.channels_last,
+            )
+
+    def forward(
+        self,
+        x,
+        mask,
+        feats,
+        img,
+        ws,
+        fname=None,
+        force_fp32=False,
+        fused_modconv=None,
+        **layer_kwargs,
+    ):
+        dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
+        dtype = torch.float32
+        memory_format = (
+            torch.channels_last
+            if self.channels_last and not force_fp32
+            else torch.contiguous_format
+        )
+        if fused_modconv is None:
+            fused_modconv = (not self.training) and (
+                dtype == torch.float32 or int(x.shape[0]) == 1
+            )
+
+        x = x.to(dtype=dtype, memory_format=memory_format)
+        x_skip = (
+            feats[self.resolution].clone().to(dtype=dtype, memory_format=memory_format)
+        )
+
+        # Main layers.
+        if self.in_channels == 0:
+            x = self.conv1(x, ws[1], fused_modconv=fused_modconv, **layer_kwargs)
+        elif self.architecture == "resnet":
+            y = self.skip(x, gain=np.sqrt(0.5))
+            x = self.conv0(
+                x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs
+            )
+            if len(self.ffc_skip) > 0:
+                mask = F.interpolate(
+                    mask,
+                    size=x_skip.shape[2:],
+                )
+                z = x + x_skip
+                for fres in self.ffc_skip:
+                    z = fres(z, mask)
+                x = x + z
+            else:
+                x = x + x_skip
+            x = self.conv1(
+                x,
+                ws[1].clone(),
+                fused_modconv=fused_modconv,
+                gain=np.sqrt(0.5),
+                **layer_kwargs,
+            )
+            x = y.add_(x)
+        else:
+            x = self.conv0(
+                x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs
+            )
+            if len(self.ffc_skip) > 0:
+                mask = F.interpolate(
+                    mask,
+                    size=x_skip.shape[2:],
+                )
+                z = x + x_skip
+                for fres in self.ffc_skip:
+                    z = fres(z, mask)
+                x = x + z
+            else:
+                x = x + x_skip
+            x = self.conv1(
+                x, ws[1].clone(), fused_modconv=fused_modconv, **layer_kwargs
+            )
+        # ToRGB.
+        if img is not None:
+            img = upsample2d(img, self.resample_filter)
+        if self.is_last or self.architecture == "skip":
+            y = self.torgb(x, ws[2].clone(), fused_modconv=fused_modconv)
+            y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
+            img = img.add_(y) if img is not None else y
+
+        x = x.to(dtype=dtype)
+        assert x.dtype == dtype
+        assert img is None or img.dtype == torch.float32
+        return x, img
+
+
+class SynthesisNetwork(torch.nn.Module):
+    def __init__(
+        self,
+        w_dim,  # Intermediate latent (W) dimensionality.
+        z_dim,  # Output Latent (Z) dimensionality.
+        img_resolution,  # Output image resolution.
+        img_channels,  # Number of color channels.
+        channel_base=16384,  # Overall multiplier for the number of channels.
+        channel_max=512,  # Maximum number of channels in any layer.
+        num_fp16_res=0,  # Use FP16 for the N highest resolutions.
+        **block_kwargs,  # Arguments for SynthesisBlock.
+    ):
+        assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0
+        super().__init__()
+        self.w_dim = w_dim
+        self.img_resolution = img_resolution
+        self.img_resolution_log2 = int(np.log2(img_resolution))
+        self.img_channels = img_channels
+        self.block_resolutions = [
+            2**i for i in range(3, self.img_resolution_log2 + 1)
+        ]
+        channels_dict = {
+            res: min(channel_base // res, channel_max) for res in self.block_resolutions
+        }
+        fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
+
+        self.foreword = SynthesisForeword(
+            img_channels=img_channels,
+            in_channels=min(channel_base // 4, channel_max),
+            z_dim=z_dim * 2,
+            resolution=4,
+        )
+
+        self.num_ws = self.img_resolution_log2 * 2 - 2
+        for res in self.block_resolutions:
+            if res // 2 in channels_dict.keys():
+                in_channels = channels_dict[res // 2] if res > 4 else 0
+            else:
+                in_channels = min(channel_base // (res // 2), channel_max)
+            out_channels = channels_dict[res]
+            use_fp16 = res >= fp16_resolution
+            use_fp16 = False
+            is_last = res == self.img_resolution
+            block = SynthesisBlock(
+                in_channels,
+                out_channels,
+                w_dim=w_dim,
+                resolution=res,
+                img_channels=img_channels,
+                is_last=is_last,
+                use_fp16=use_fp16,
+                **block_kwargs,
+            )
+            setattr(self, f"b{res}", block)
+
+    def forward(self, x_global, mask, feats, ws, fname=None, **block_kwargs):
+        img = None
+
+        x, img = self.foreword(x_global, ws, feats, img)
+
+        for res in self.block_resolutions:
+            block = getattr(self, f"b{res}")
+            mod_vector0 = []
+            mod_vector0.append(ws[:, int(np.log2(res)) * 2 - 5])
+            mod_vector0.append(x_global.clone())
+            mod_vector0 = torch.cat(mod_vector0, dim=1)
+
+            mod_vector1 = []
+            mod_vector1.append(ws[:, int(np.log2(res)) * 2 - 4])
+            mod_vector1.append(x_global.clone())
+            mod_vector1 = torch.cat(mod_vector1, dim=1)
+
+            mod_vector_rgb = []
+            mod_vector_rgb.append(ws[:, int(np.log2(res)) * 2 - 3])
+            mod_vector_rgb.append(x_global.clone())
+            mod_vector_rgb = torch.cat(mod_vector_rgb, dim=1)
+            x, img = block(
+                x,
+                mask,
+                feats,
+                img,
+                (mod_vector0, mod_vector1, mod_vector_rgb),
+                fname=fname,
+                **block_kwargs,
+            )
+        return img
+
+
+class MappingNetwork(torch.nn.Module):
+    def __init__(
+        self,
+        z_dim,  # Input latent (Z) dimensionality, 0 = no latent.
+        c_dim,  # Conditioning label (C) dimensionality, 0 = no label.
+        w_dim,  # Intermediate latent (W) dimensionality.
+        num_ws,  # Number of intermediate latents to output, None = do not broadcast.
+        num_layers=8,  # Number of mapping layers.
+        embed_features=None,  # Label embedding dimensionality, None = same as w_dim.
+        layer_features=None,  # Number of intermediate features in the mapping layers, None = same as w_dim.
+        activation="lrelu",  # Activation function: 'relu', 'lrelu', etc.
+        lr_multiplier=0.01,  # Learning rate multiplier for the mapping layers.
+        w_avg_beta=0.995,  # Decay for tracking the moving average of W during training, None = do not track.
+    ):
+        super().__init__()
+        self.z_dim = z_dim
+        self.c_dim = c_dim
+        self.w_dim = w_dim
+        self.num_ws = num_ws
+        self.num_layers = num_layers
+        self.w_avg_beta = w_avg_beta
+
+        if embed_features is None:
+            embed_features = w_dim
+        if c_dim == 0:
+            embed_features = 0
+        if layer_features is None:
+            layer_features = w_dim
+        features_list = (
+            [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]
+        )
+
+        if c_dim > 0:
+            self.embed = FullyConnectedLayer(c_dim, embed_features)
+        for idx in range(num_layers):
+            in_features = features_list[idx]
+            out_features = features_list[idx + 1]
+            layer = FullyConnectedLayer(
+                in_features,
+                out_features,
+                activation=activation,
+                lr_multiplier=lr_multiplier,
+            )
+            setattr(self, f"fc{idx}", layer)
+
+        if num_ws is not None and w_avg_beta is not None:
+            self.register_buffer("w_avg", torch.zeros([w_dim]))
+
+    def forward(
+        self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False
+    ):
+        # Embed, normalize, and concat inputs.
+        x = None
+        with torch.autograd.profiler.record_function("input"):
+            if self.z_dim > 0:
+                x = normalize_2nd_moment(z.to(torch.float32))
+            if self.c_dim > 0:
+                y = normalize_2nd_moment(self.embed(c.to(torch.float32)))
+                x = torch.cat([x, y], dim=1) if x is not None else y
+
+        # Main layers.
+        for idx in range(self.num_layers):
+            layer = getattr(self, f"fc{idx}")
+            x = layer(x)
+
+        # Update moving average of W.
+        if self.w_avg_beta is not None and self.training and not skip_w_avg_update:
+            with torch.autograd.profiler.record_function("update_w_avg"):
+                self.w_avg.copy_(
+                    x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta)
+                )
+
+        # Broadcast.
+        if self.num_ws is not None:
+            with torch.autograd.profiler.record_function("broadcast"):
+                x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
+
+        # Apply truncation.
+        if truncation_psi != 1:
+            with torch.autograd.profiler.record_function("truncate"):
+                assert self.w_avg_beta is not None
+                if self.num_ws is None or truncation_cutoff is None:
+                    x = self.w_avg.lerp(x, truncation_psi)
+                else:
+                    x[:, :truncation_cutoff] = self.w_avg.lerp(
+                        x[:, :truncation_cutoff], truncation_psi
+                    )
+        return x
+
+
+class Generator(torch.nn.Module):
+    def __init__(
+        self,
+        z_dim,  # Input latent (Z) dimensionality.
+        c_dim,  # Conditioning label (C) dimensionality.
+        w_dim,  # Intermediate latent (W) dimensionality.
+        img_resolution,  # Output resolution.
+        img_channels,  # Number of output color channels.
+        encoder_kwargs={},  # Arguments for EncoderNetwork.
+        mapping_kwargs={},  # Arguments for MappingNetwork.
+        synthesis_kwargs={},  # Arguments for SynthesisNetwork.
+    ):
+        super().__init__()
+        self.z_dim = z_dim
+        self.c_dim = c_dim
+        self.w_dim = w_dim
+        self.img_resolution = img_resolution
+        self.img_channels = img_channels
+        self.encoder = EncoderNetwork(
+            c_dim=c_dim,
+            z_dim=z_dim,
+            img_resolution=img_resolution,
+            img_channels=img_channels,
+            **encoder_kwargs,
+        )
+        self.synthesis = SynthesisNetwork(
+            z_dim=z_dim,
+            w_dim=w_dim,
+            img_resolution=img_resolution,
+            img_channels=img_channels,
+            **synthesis_kwargs,
+        )
+        self.num_ws = self.synthesis.num_ws
+        self.mapping = MappingNetwork(
+            z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs
+        )
+
+    def forward(
+        self,
+        img,
+        c,
+        fname=None,
+        truncation_psi=1,
+        truncation_cutoff=None,
+        **synthesis_kwargs,
+    ):
+        mask = img[:, -1].unsqueeze(1)
+        x_global, z, feats = self.encoder(img, c)
+        ws = self.mapping(
+            z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff
+        )
+        img = self.synthesis(x_global, mask, feats, ws, fname=fname, **synthesis_kwargs)
+        return img
+
+
+FCF_MODEL_URL = os.environ.get(
+    "FCF_MODEL_URL",
+    "https://github.com/Sanster/models/releases/download/add_fcf/places_512_G.pth",
+)
+FCF_MODEL_MD5 = os.environ.get("FCF_MODEL_MD5", "3323152bc01bf1c56fd8aba74435a211")
+
+
+class FcF(InpaintModel):
+    name = "fcf"
+    min_size = 512
+    pad_mod = 512
+    pad_to_square = True
+    is_erase_model = True
+
+    def init_model(self, device, **kwargs):
+        seed = 0
+        random.seed(seed)
+        np.random.seed(seed)
+        torch.manual_seed(seed)
+        torch.cuda.manual_seed_all(seed)
+        torch.backends.cudnn.deterministic = True
+        torch.backends.cudnn.benchmark = False
+
+        kwargs = {
+            "channel_base": 1 * 32768,
+            "channel_max": 512,
+            "num_fp16_res": 4,
+            "conv_clamp": 256,
+        }
+        G = Generator(
+            z_dim=512,
+            c_dim=0,
+            w_dim=512,
+            img_resolution=512,
+            img_channels=3,
+            synthesis_kwargs=kwargs,
+            encoder_kwargs=kwargs,
+            mapping_kwargs={"num_layers": 2},
+        )
+        self.model = load_model(G, FCF_MODEL_URL, device, FCF_MODEL_MD5)
+        self.label = torch.zeros([1, self.model.c_dim], device=device)
+
+    @staticmethod
+    def download():
+        download_model(FCF_MODEL_URL, FCF_MODEL_MD5)
+
+    @staticmethod
+    def is_downloaded() -> bool:
+        return os.path.exists(get_cache_path_by_url(FCF_MODEL_URL))
+
+    @torch.no_grad()
+    def __call__(self, image, mask, config: InpaintRequest):
+        """
+        images: [H, W, C] RGB, not normalized
+        masks: [H, W]
+        return: BGR IMAGE
+        """
+        if image.shape[0] == 512 and image.shape[1] == 512:
+            return self._pad_forward(image, mask, config)
+
+        boxes = boxes_from_mask(mask)
+        crop_result = []
+        config.hd_strategy_crop_margin = 128
+        for box in boxes:
+            crop_image, crop_mask, crop_box = self._crop_box(image, mask, box, config)
+            origin_size = crop_image.shape[:2]
+            resize_image = resize_max_size(crop_image, size_limit=512)
+            resize_mask = resize_max_size(crop_mask, size_limit=512)
+            inpaint_result = self._pad_forward(resize_image, resize_mask, config)
+
+            # only paste masked area result
+            inpaint_result = cv2.resize(
+                inpaint_result,
+                (origin_size[1], origin_size[0]),
+                interpolation=cv2.INTER_CUBIC,
+            )
+
+            original_pixel_indices = crop_mask < 127
+            inpaint_result[original_pixel_indices] = crop_image[:, :, ::-1][
+                original_pixel_indices
+            ]
+
+            crop_result.append((inpaint_result, crop_box))
+
+        inpaint_result = image[:, :, ::-1].copy()
+        for crop_image, crop_box in crop_result:
+            x1, y1, x2, y2 = crop_box
+            inpaint_result[y1:y2, x1:x2, :] = crop_image
+
+        return inpaint_result
+
+    def forward(self, image, mask, config: InpaintRequest):
+        """Input images and output images have same size
+        images: [H, W, C] RGB
+        masks: [H, W] mask area == 255
+        return: BGR IMAGE
+        """
+
+        image = norm_img(image)  # [0, 1]
+        image = image * 2 - 1  # [0, 1] -> [-1, 1]
+        mask = (mask > 120) * 255
+        mask = norm_img(mask)
+
+        image = torch.from_numpy(image).unsqueeze(0).to(self.device)
+        mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
+
+        erased_img = image * (1 - mask)
+        input_image = torch.cat([0.5 - mask, erased_img], dim=1)
+
+        output = self.model(
+            input_image, self.label, truncation_psi=0.1, noise_mode="none"
+        )
+        output = (
+            (output.permute(0, 2, 3, 1) * 127.5 + 127.5)
+            .round()
+            .clamp(0, 255)
+            .to(torch.uint8)
+        )
+        output = output[0].cpu().numpy()
+        cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
+        return cur_res
diff --git a/iopaint/model/helper/controlnet_preprocess.py b/iopaint/model/helper/controlnet_preprocess.py
new file mode 100644
index 0000000000000000000000000000000000000000..75c409fac12b4f035defb14a4c02d1c46f4b2ba3
--- /dev/null
+++ b/iopaint/model/helper/controlnet_preprocess.py
@@ -0,0 +1,68 @@
+import torch
+import PIL
+import cv2
+from PIL import Image
+import numpy as np
+
+from iopaint.helper import pad_img_to_modulo
+
+
+def make_canny_control_image(image: np.ndarray) -> Image:
+    canny_image = cv2.Canny(image, 100, 200)
+    canny_image = canny_image[:, :, None]
+    canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
+    canny_image = PIL.Image.fromarray(canny_image)
+    control_image = canny_image
+    return control_image
+
+
+def make_openpose_control_image(image: np.ndarray) -> Image:
+    from controlnet_aux import OpenposeDetector
+
+    processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
+    control_image = processor(image, hand_and_face=True)
+    return control_image
+
+
+def resize_image(input_image, resolution):
+    H, W, C = input_image.shape
+    H = float(H)
+    W = float(W)
+    k = float(resolution) / min(H, W)
+    H *= k
+    W *= k
+    H = int(np.round(H / 64.0)) * 64
+    W = int(np.round(W / 64.0)) * 64
+    img = cv2.resize(
+        input_image,
+        (W, H),
+        interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA,
+    )
+    return img
+
+
+def make_depth_control_image(image: np.ndarray) -> Image:
+    from controlnet_aux import MidasDetector
+
+    midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
+
+    origin_height, origin_width = image.shape[:2]
+    pad_image = pad_img_to_modulo(image, mod=64, square=False, min_size=512)
+    depth_image = midas(pad_image)
+    depth_image = depth_image[0:origin_height, 0:origin_width]
+    depth_image = depth_image[:, :, None]
+    depth_image = np.concatenate([depth_image, depth_image, depth_image], axis=2)
+    control_image = PIL.Image.fromarray(depth_image)
+    return control_image
+
+
+def make_inpaint_control_image(image: np.ndarray, mask: np.ndarray) -> torch.Tensor:
+    """
+    image: [H, W, C] RGB
+    mask: [H, W, 1] 255 means area to repaint
+    """
+    image = image.astype(np.float32) / 255.0
+    image[mask[:, :, -1] > 128] = -1.0  # set as masked pixel
+    image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
+    image = torch.from_numpy(image)
+    return image
diff --git a/iopaint/model/helper/cpu_text_encoder.py b/iopaint/model/helper/cpu_text_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..116eb48b6ae9b49d0c198282746b35877b2c4aa5
--- /dev/null
+++ b/iopaint/model/helper/cpu_text_encoder.py
@@ -0,0 +1,41 @@
+import torch
+from transformers import PreTrainedModel
+
+from ..utils import torch_gc
+
+
+class CPUTextEncoderWrapper(PreTrainedModel):
+    def __init__(self, text_encoder, torch_dtype):
+        super().__init__(text_encoder.config)
+        self.config = text_encoder.config
+        self._device = text_encoder.device
+        # cpu not support float16
+        self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True)
+        self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)
+        self.torch_dtype = torch_dtype
+        del text_encoder
+        torch_gc()
+
+    def __call__(self, x, **kwargs):
+        input_device = x.device
+        original_output = self.text_encoder(x.to(self.text_encoder.device), **kwargs)
+        for k, v in original_output.items():
+            if isinstance(v, tuple):
+                original_output[k] = [
+                    v[i].to(input_device).to(self.torch_dtype) for i in range(len(v))
+                ]
+            else:
+                original_output[k] = v.to(input_device).to(self.torch_dtype)
+        return original_output
+
+    @property
+    def dtype(self):
+        return self.torch_dtype
+
+    @property
+    def device(self) -> torch.device:
+        """
+        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
+        device).
+        """
+        return self._device
\ No newline at end of file
diff --git a/iopaint/model/helper/g_diffuser_bot.py b/iopaint/model/helper/g_diffuser_bot.py
new file mode 100644
index 0000000000000000000000000000000000000000..a4147af4001d677c4ac5f3ce7e6e808902a0af46
--- /dev/null
+++ b/iopaint/model/helper/g_diffuser_bot.py
@@ -0,0 +1,167 @@
+# code copy from: https://github.com/parlance-zz/g-diffuser-bot
+import cv2
+import numpy as np
+
+
+def np_img_grey_to_rgb(data):
+    if data.ndim == 3:
+        return data
+    return np.expand_dims(data, 2) * np.ones((1, 1, 3))
+
+
+def convolve(data1, data2):  # fast convolution with fft
+    if data1.ndim != data2.ndim:  # promote to rgb if mismatch
+        if data1.ndim < 3:
+            data1 = np_img_grey_to_rgb(data1)
+        if data2.ndim < 3:
+            data2 = np_img_grey_to_rgb(data2)
+    return ifft2(fft2(data1) * fft2(data2))
+
+
+def fft2(data):
+    if data.ndim > 2:  # multiple channels
+        out_fft = np.zeros(
+            (data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128
+        )
+        for c in range(data.shape[2]):
+            c_data = data[:, :, c]
+            out_fft[:, :, c] = np.fft.fft2(np.fft.fftshift(c_data), norm="ortho")
+            out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c])
+    else:  # single channel
+        out_fft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
+        out_fft[:, :] = np.fft.fft2(np.fft.fftshift(data), norm="ortho")
+        out_fft[:, :] = np.fft.ifftshift(out_fft[:, :])
+
+    return out_fft
+
+
+def ifft2(data):
+    if data.ndim > 2:  # multiple channels
+        out_ifft = np.zeros(
+            (data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128
+        )
+        for c in range(data.shape[2]):
+            c_data = data[:, :, c]
+            out_ifft[:, :, c] = np.fft.ifft2(np.fft.fftshift(c_data), norm="ortho")
+            out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c])
+    else:  # single channel
+        out_ifft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
+        out_ifft[:, :] = np.fft.ifft2(np.fft.fftshift(data), norm="ortho")
+        out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :])
+
+    return out_ifft
+
+
+def get_gradient_kernel(width, height, std=3.14, mode="linear"):
+    window_scale_x = float(
+        width / min(width, height)
+    )  # for non-square aspect ratios we still want a circular kernel
+    window_scale_y = float(height / min(width, height))
+    if mode == "gaussian":
+        x = (np.arange(width) / width * 2.0 - 1.0) * window_scale_x
+        kx = np.exp(-x * x * std)
+        if window_scale_x != window_scale_y:
+            y = (np.arange(height) / height * 2.0 - 1.0) * window_scale_y
+            ky = np.exp(-y * y * std)
+        else:
+            y = x
+            ky = kx
+        return np.outer(kx, ky)
+    elif mode == "linear":
+        x = (np.arange(width) / width * 2.0 - 1.0) * window_scale_x
+        if window_scale_x != window_scale_y:
+            y = (np.arange(height) / height * 2.0 - 1.0) * window_scale_y
+        else:
+            y = x
+        return np.clip(1.0 - np.sqrt(np.add.outer(x * x, y * y)) * std / 3.14, 0.0, 1.0)
+    else:
+        raise Exception("Error: Unknown mode in get_gradient_kernel: {0}".format(mode))
+
+
+def image_blur(data, std=3.14, mode="linear"):
+    width = data.shape[0]
+    height = data.shape[1]
+    kernel = get_gradient_kernel(width, height, std, mode=mode)
+    return np.real(convolve(data, kernel / np.sqrt(np.sum(kernel * kernel))))
+
+
+def soften_mask(mask_img, softness, space):
+    if softness == 0:
+        return mask_img
+    softness = min(softness, 1.0)
+    space = np.clip(space, 0.0, 1.0)
+    original_max_opacity = np.max(mask_img)
+    out_mask = mask_img <= 0.0
+    blurred_mask = image_blur(mask_img, 3.5 / softness, mode="linear")
+    blurred_mask = np.maximum(blurred_mask - np.max(blurred_mask[out_mask]), 0.0)
+    mask_img *= blurred_mask  # preserve partial opacity in original input mask
+    mask_img /= np.max(mask_img)  # renormalize
+    mask_img = np.clip(mask_img - space, 0.0, 1.0)  # make space
+    mask_img /= np.max(mask_img)  # and renormalize again
+    mask_img *= original_max_opacity  # restore original max opacity
+    return mask_img
+
+
+def expand_image(
+    cv2_img, top: int, right: int, bottom: int, left: int, softness: float, space: float
+):
+    assert cv2_img.shape[2] == 3
+    origin_h, origin_w = cv2_img.shape[:2]
+    new_width = cv2_img.shape[1] + left + right
+    new_height = cv2_img.shape[0] + top + bottom
+
+    # TODO: which is better?
+    # new_img = np.random.randint(0, 255, (new_height, new_width, 3), np.uint8)
+    new_img = cv2.copyMakeBorder(
+        cv2_img, top, bottom, left, right, cv2.BORDER_REPLICATE
+    )
+    mask_img = np.zeros((new_height, new_width), np.uint8)
+    mask_img[top : top + cv2_img.shape[0], left : left + cv2_img.shape[1]] = 255
+
+    if softness > 0.0:
+        mask_img = soften_mask(mask_img / 255.0, softness / 100.0, space / 100.0)
+        mask_img = (np.clip(mask_img, 0.0, 1.0) * 255.0).astype(np.uint8)
+
+    mask_image = 255.0 - mask_img  # extract mask from alpha channel and invert
+    rgb_init_image = (
+        0.0 + new_img[:, :, 0:3]
+    )  # strip mask from init_img leaving only rgb channels
+
+    hard_mask = np.zeros_like(cv2_img[:, :, 0])
+    if top != 0:
+        hard_mask[0 : origin_h // 2, :] = 255
+    if bottom != 0:
+        hard_mask[origin_h // 2 :, :] = 255
+    if left != 0:
+        hard_mask[:, 0 : origin_w // 2] = 255
+    if right != 0:
+        hard_mask[:, origin_w // 2 :] = 255
+
+    hard_mask = cv2.copyMakeBorder(
+        hard_mask, top, bottom, left, right, cv2.BORDER_DEFAULT, value=255
+    )
+    mask_image = np.where(hard_mask > 0, mask_image, 0)
+    return rgb_init_image.astype(np.uint8), mask_image.astype(np.uint8)
+
+
+if __name__ == "__main__":
+    from pathlib import Path
+
+    current_dir = Path(__file__).parent.absolute().resolve()
+    image_path = current_dir.parent / "tests" / "bunny.jpeg"
+    init_image = cv2.imread(str(image_path))
+    init_image, mask_image = expand_image(
+        init_image,
+        top=100,
+        right=100,
+        bottom=100,
+        left=100,
+        softness=20,
+        space=20,
+    )
+    print(mask_image.dtype, mask_image.min(), mask_image.max())
+    print(init_image.dtype, init_image.min(), init_image.max())
+    mask_image = mask_image.astype(np.uint8)
+    init_image = init_image.astype(np.uint8)
+    cv2.imwrite("expanded_image.png", init_image)
+    cv2.imwrite("expanded_mask.png", mask_image)
diff --git a/iopaint/model/instruct_pix2pix.py b/iopaint/model/instruct_pix2pix.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc8cd26c2de87407e828b934b1dcddf1b0971f54
--- /dev/null
+++ b/iopaint/model/instruct_pix2pix.py
@@ -0,0 +1,64 @@
+import PIL.Image
+import cv2
+import torch
+from loguru import logger
+
+from iopaint.const import INSTRUCT_PIX2PIX_NAME
+from .base import DiffusionInpaintModel
+from iopaint.schema import InpaintRequest
+from .utils import get_torch_dtype, enable_low_mem, is_local_files_only
+
+
+class InstructPix2Pix(DiffusionInpaintModel):
+    name = INSTRUCT_PIX2PIX_NAME
+    pad_mod = 8
+    min_size = 512
+
+    def init_model(self, device: torch.device, **kwargs):
+        from diffusers import StableDiffusionInstructPix2PixPipeline
+
+        use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
+
+        model_kwargs = {"local_files_only": is_local_files_only(**kwargs)}
+        if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
+            logger.info("Disable Stable Diffusion Model NSFW checker")
+            model_kwargs.update(
+                dict(
+                    safety_checker=None,
+                    feature_extractor=None,
+                    requires_safety_checker=False,
+                )
+            )
+
+        self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained(
+            self.name, variant="fp16", torch_dtype=torch_dtype, **model_kwargs
+        )
+        enable_low_mem(self.model, kwargs.get("low_mem", False))
+
+        if kwargs.get("cpu_offload", False) and use_gpu:
+            logger.info("Enable sequential cpu offload")
+            self.model.enable_sequential_cpu_offload(gpu_id=0)
+        else:
+            self.model = self.model.to(device)
+
+    def forward(self, image, mask, config: InpaintRequest):
+        """Input image and output image have same size
+        image: [H, W, C] RGB
+        mask: [H, W, 1] 255 means area to repaint
+        return: BGR IMAGE
+        edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0]
+        """
+        output = self.model(
+            image=PIL.Image.fromarray(image),
+            prompt=config.prompt,
+            negative_prompt=config.negative_prompt,
+            num_inference_steps=config.sd_steps,
+            image_guidance_scale=config.p2p_image_guidance_scale,
+            guidance_scale=config.sd_guidance_scale,
+            output_type="np",
+            generator=torch.manual_seed(config.sd_seed),
+        ).images[0]
+
+        output = (output * 255).round().astype("uint8")
+        output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
+        return output
diff --git a/iopaint/model/kandinsky.py b/iopaint/model/kandinsky.py
new file mode 100644
index 0000000000000000000000000000000000000000..1a0bf1c46e4c648c2b2e78c8b75d8478dc0613a9
--- /dev/null
+++ b/iopaint/model/kandinsky.py
@@ -0,0 +1,65 @@
+import PIL.Image
+import cv2
+import numpy as np
+import torch
+
+from iopaint.const import KANDINSKY22_NAME
+from .base import DiffusionInpaintModel
+from iopaint.schema import InpaintRequest
+from .utils import get_torch_dtype, enable_low_mem, is_local_files_only
+
+
+class Kandinsky(DiffusionInpaintModel):
+    pad_mod = 64
+    min_size = 512
+
+    def init_model(self, device: torch.device, **kwargs):
+        from diffusers import AutoPipelineForInpainting
+
+        use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
+
+        model_kwargs = {
+            "torch_dtype": torch_dtype,
+            "local_files_only": is_local_files_only(**kwargs),
+        }
+        self.model = AutoPipelineForInpainting.from_pretrained(
+            self.name, **model_kwargs
+        ).to(device)
+        enable_low_mem(self.model, kwargs.get("low_mem", False))
+
+        self.callback = kwargs.pop("callback", None)
+
+    def forward(self, image, mask, config: InpaintRequest):
+        """Input image and output image have same size
+        image: [H, W, C] RGB
+        mask: [H, W, 1] 255 means area to repaint
+        return: BGR IMAGE
+        """
+        self.set_scheduler(config)
+
+        generator = torch.manual_seed(config.sd_seed)
+        mask = mask.astype(np.float32) / 255
+        img_h, img_w = image.shape[:2]
+
+        # kandinsky 没有 strength
+        output = self.model(
+            prompt=config.prompt,
+            negative_prompt=config.negative_prompt,
+            image=PIL.Image.fromarray(image),
+            mask_image=mask[:, :, 0],
+            height=img_h,
+            width=img_w,
+            num_inference_steps=config.sd_steps,
+            guidance_scale=config.sd_guidance_scale,
+            output_type="np",
+            callback_on_step_end=self.callback,
+            generator=generator,
+        ).images[0]
+
+        output = (output * 255).round().astype("uint8")
+        output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
+        return output
+
+
+class Kandinsky22(Kandinsky):
+    name = KANDINSKY22_NAME
diff --git a/iopaint/model/lama.py b/iopaint/model/lama.py
new file mode 100644
index 0000000000000000000000000000000000000000..7aba242ab93ab0dac285c667365e1c27dce4cbf9
--- /dev/null
+++ b/iopaint/model/lama.py
@@ -0,0 +1,57 @@
+import os
+
+import cv2
+import numpy as np
+import torch
+
+from iopaint.helper import (
+    norm_img,
+    get_cache_path_by_url,
+    load_jit_model,
+    download_model,
+)
+from iopaint.schema import InpaintRequest
+from .base import InpaintModel
+
+LAMA_MODEL_URL = os.environ.get(
+    "LAMA_MODEL_URL",
+    "https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
+)
+LAMA_MODEL_MD5 = os.environ.get("LAMA_MODEL_MD5", "e3aa4aaa15225a33ec84f9f4bc47e500")
+
+
+class LaMa(InpaintModel):
+    name = "lama"
+    pad_mod = 8
+    is_erase_model = True
+
+    @staticmethod
+    def download():
+        download_model(LAMA_MODEL_URL, LAMA_MODEL_MD5)
+
+    def init_model(self, device, **kwargs):
+        self.model = load_jit_model(LAMA_MODEL_URL, device, LAMA_MODEL_MD5).eval()
+
+    @staticmethod
+    def is_downloaded() -> bool:
+        return os.path.exists(get_cache_path_by_url(LAMA_MODEL_URL))
+
+    def forward(self, image, mask, config: InpaintRequest):
+        """Input image and output image have same size
+        image: [H, W, C] RGB
+        mask: [H, W]
+        return: BGR IMAGE
+        """
+        image = norm_img(image)
+        mask = norm_img(mask)
+
+        mask = (mask > 0) * 1
+        image = torch.from_numpy(image).unsqueeze(0).to(self.device)
+        mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
+
+        inpainted_image = self.model(image, mask)
+
+        cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy()
+        cur_res = np.clip(cur_res * 255, 0, 255).astype("uint8")
+        cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR)
+        return cur_res
diff --git a/iopaint/model/ldm.py b/iopaint/model/ldm.py
new file mode 100644
index 0000000000000000000000000000000000000000..19e51a3ef4f2c27b5cca5398820dbaf5e81888a1
--- /dev/null
+++ b/iopaint/model/ldm.py
@@ -0,0 +1,336 @@
+import os
+
+import numpy as np
+import torch
+from loguru import logger
+
+from .base import InpaintModel
+from .ddim_sampler import DDIMSampler
+from .plms_sampler import PLMSSampler
+from iopaint.schema import InpaintRequest, LDMSampler
+
+torch.manual_seed(42)
+import torch.nn as nn
+from iopaint.helper import (
+    download_model,
+    norm_img,
+    get_cache_path_by_url,
+    load_jit_model,
+)
+from .utils import (
+    make_beta_schedule,
+    timestep_embedding,
+)
+
+LDM_ENCODE_MODEL_URL = os.environ.get(
+    "LDM_ENCODE_MODEL_URL",
+    "https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_encode.pt",
+)
+LDM_ENCODE_MODEL_MD5 = os.environ.get(
+    "LDM_ENCODE_MODEL_MD5", "23239fc9081956a3e70de56472b3f296"
+)
+
+LDM_DECODE_MODEL_URL = os.environ.get(
+    "LDM_DECODE_MODEL_URL",
+    "https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_decode.pt",
+)
+LDM_DECODE_MODEL_MD5 = os.environ.get(
+    "LDM_DECODE_MODEL_MD5", "fe419cd15a750d37a4733589d0d3585c"
+)
+
+LDM_DIFFUSION_MODEL_URL = os.environ.get(
+    "LDM_DIFFUSION_MODEL_URL",
+    "https://github.com/Sanster/models/releases/download/add_ldm/diffusion.pt",
+)
+
+LDM_DIFFUSION_MODEL_MD5 = os.environ.get(
+    "LDM_DIFFUSION_MODEL_MD5", "b0afda12bf790c03aba2a7431f11d22d"
+)
+
+
+class DDPM(nn.Module):
+    # classic DDPM with Gaussian diffusion, in image space
+    def __init__(
+        self,
+        device,
+        timesteps=1000,
+        beta_schedule="linear",
+        linear_start=0.0015,
+        linear_end=0.0205,
+        cosine_s=0.008,
+        original_elbo_weight=0.0,
+        v_posterior=0.0,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
+        l_simple_weight=1.0,
+        parameterization="eps",  # all assuming fixed variance schedules
+        use_positional_encodings=False,
+    ):
+        super().__init__()
+        self.device = device
+        self.parameterization = parameterization
+        self.use_positional_encodings = use_positional_encodings
+
+        self.v_posterior = v_posterior
+        self.original_elbo_weight = original_elbo_weight
+        self.l_simple_weight = l_simple_weight
+
+        self.register_schedule(
+            beta_schedule=beta_schedule,
+            timesteps=timesteps,
+            linear_start=linear_start,
+            linear_end=linear_end,
+            cosine_s=cosine_s,
+        )
+
+    def register_schedule(
+        self,
+        given_betas=None,
+        beta_schedule="linear",
+        timesteps=1000,
+        linear_start=1e-4,
+        linear_end=2e-2,
+        cosine_s=8e-3,
+    ):
+        betas = make_beta_schedule(
+            self.device,
+            beta_schedule,
+            timesteps,
+            linear_start=linear_start,
+            linear_end=linear_end,
+            cosine_s=cosine_s,
+        )
+        alphas = 1.0 - betas
+        alphas_cumprod = np.cumprod(alphas, axis=0)
+        alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
+
+        (timesteps,) = betas.shape
+        self.num_timesteps = int(timesteps)
+        self.linear_start = linear_start
+        self.linear_end = linear_end
+        assert (
+            alphas_cumprod.shape[0] == self.num_timesteps
+        ), "alphas have to be defined for each timestep"
+
+        to_torch = lambda x: torch.tensor(x, dtype=torch.float32).to(self.device)
+
+        self.register_buffer("betas", to_torch(betas))
+        self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
+        self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
+
+        # calculations for diffusion q(x_t | x_{t-1}) and others
+        self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
+        self.register_buffer(
+            "sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
+        )
+        self.register_buffer(
+            "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
+        )
+        self.register_buffer(
+            "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
+        )
+        self.register_buffer(
+            "sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
+        )
+
+        # calculations for posterior q(x_{t-1} | x_t, x_0)
+        posterior_variance = (1 - self.v_posterior) * betas * (
+            1.0 - alphas_cumprod_prev
+        ) / (1.0 - alphas_cumprod) + self.v_posterior * betas
+        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+        self.register_buffer("posterior_variance", to_torch(posterior_variance))
+        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+        self.register_buffer(
+            "posterior_log_variance_clipped",
+            to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
+        )
+        self.register_buffer(
+            "posterior_mean_coef1",
+            to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
+        )
+        self.register_buffer(
+            "posterior_mean_coef2",
+            to_torch(
+                (1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
+            ),
+        )
+
+        if self.parameterization == "eps":
+            lvlb_weights = self.betas**2 / (
+                2
+                * self.posterior_variance
+                * to_torch(alphas)
+                * (1 - self.alphas_cumprod)
+            )
+        elif self.parameterization == "x0":
+            lvlb_weights = (
+                0.5
+                * np.sqrt(torch.Tensor(alphas_cumprod))
+                / (2.0 * 1 - torch.Tensor(alphas_cumprod))
+            )
+        else:
+            raise NotImplementedError("mu not supported")
+        # TODO how to choose this term
+        lvlb_weights[0] = lvlb_weights[1]
+        self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
+        assert not torch.isnan(self.lvlb_weights).all()
+
+
+class LatentDiffusion(DDPM):
+    def __init__(
+        self,
+        diffusion_model,
+        device,
+        cond_stage_key="image",
+        cond_stage_trainable=False,
+        concat_mode=True,
+        scale_factor=1.0,
+        scale_by_std=False,
+        *args,
+        **kwargs,
+    ):
+        self.num_timesteps_cond = 1
+        self.scale_by_std = scale_by_std
+        super().__init__(device, *args, **kwargs)
+        self.diffusion_model = diffusion_model
+        self.concat_mode = concat_mode
+        self.cond_stage_trainable = cond_stage_trainable
+        self.cond_stage_key = cond_stage_key
+        self.num_downs = 2
+        self.scale_factor = scale_factor
+
+    def make_cond_schedule(
+        self,
+    ):
+        self.cond_ids = torch.full(
+            size=(self.num_timesteps,),
+            fill_value=self.num_timesteps - 1,
+            dtype=torch.long,
+        )
+        ids = torch.round(
+            torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
+        ).long()
+        self.cond_ids[: self.num_timesteps_cond] = ids
+
+    def register_schedule(
+        self,
+        given_betas=None,
+        beta_schedule="linear",
+        timesteps=1000,
+        linear_start=1e-4,
+        linear_end=2e-2,
+        cosine_s=8e-3,
+    ):
+        super().register_schedule(
+            given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
+        )
+
+        self.shorten_cond_schedule = self.num_timesteps_cond > 1
+        if self.shorten_cond_schedule:
+            self.make_cond_schedule()
+
+    def apply_model(self, x_noisy, t, cond):
+        # x_recon = self.model(x_noisy, t, cond['c_concat'][0])  # cond['c_concat'][0].shape 1,4,128,128
+        t_emb = timestep_embedding(x_noisy.device, t, 256, repeat_only=False)
+        x_recon = self.diffusion_model(x_noisy, t_emb, cond)
+        return x_recon
+
+
+class LDM(InpaintModel):
+    name = "ldm"
+    pad_mod = 32
+    is_erase_model = True
+
+    def __init__(self, device, fp16: bool = True, **kwargs):
+        self.fp16 = fp16
+        super().__init__(device)
+        self.device = device
+
+    def init_model(self, device, **kwargs):
+        self.diffusion_model = load_jit_model(
+            LDM_DIFFUSION_MODEL_URL, device, LDM_DIFFUSION_MODEL_MD5
+        )
+        self.cond_stage_model_decode = load_jit_model(
+            LDM_DECODE_MODEL_URL, device, LDM_DECODE_MODEL_MD5
+        )
+        self.cond_stage_model_encode = load_jit_model(
+            LDM_ENCODE_MODEL_URL, device, LDM_ENCODE_MODEL_MD5
+        )
+        if self.fp16 and "cuda" in str(device):
+            self.diffusion_model = self.diffusion_model.half()
+            self.cond_stage_model_decode = self.cond_stage_model_decode.half()
+            self.cond_stage_model_encode = self.cond_stage_model_encode.half()
+
+        self.model = LatentDiffusion(self.diffusion_model, device)
+
+    @staticmethod
+    def download():
+        download_model(LDM_DIFFUSION_MODEL_URL, LDM_DIFFUSION_MODEL_MD5)
+        download_model(LDM_DECODE_MODEL_URL, LDM_DECODE_MODEL_MD5)
+        download_model(LDM_ENCODE_MODEL_URL, LDM_ENCODE_MODEL_MD5)
+
+    @staticmethod
+    def is_downloaded() -> bool:
+        model_paths = [
+            get_cache_path_by_url(LDM_DIFFUSION_MODEL_URL),
+            get_cache_path_by_url(LDM_DECODE_MODEL_URL),
+            get_cache_path_by_url(LDM_ENCODE_MODEL_URL),
+        ]
+        return all([os.path.exists(it) for it in model_paths])
+
+    @torch.cuda.amp.autocast()
+    def forward(self, image, mask, config: InpaintRequest):
+        """
+        image: [H, W, C] RGB
+        mask: [H, W, 1]
+        return: BGR IMAGE
+        """
+        # image [1,3,512,512] float32
+        # mask: [1,1,512,512] float32
+        # masked_image: [1,3,512,512] float32
+        if config.ldm_sampler == LDMSampler.ddim:
+            sampler = DDIMSampler(self.model)
+        elif config.ldm_sampler == LDMSampler.plms:
+            sampler = PLMSSampler(self.model)
+        else:
+            raise ValueError()
+
+        steps = config.ldm_steps
+        image = norm_img(image)
+        mask = norm_img(mask)
+
+        mask[mask < 0.5] = 0
+        mask[mask >= 0.5] = 1
+
+        image = torch.from_numpy(image).unsqueeze(0).to(self.device)
+        mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
+        masked_image = (1 - mask) * image
+
+        mask = self._norm(mask)
+        masked_image = self._norm(masked_image)
+
+        c = self.cond_stage_model_encode(masked_image)
+        torch.cuda.empty_cache()
+
+        cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:])  # 1,1,128,128
+        c = torch.cat((c, cc), dim=1)  # 1,4,128,128
+
+        shape = (c.shape[1] - 1,) + c.shape[2:]
+        samples_ddim = sampler.sample(
+            steps=steps, conditioning=c, batch_size=c.shape[0], shape=shape
+        )
+        torch.cuda.empty_cache()
+        x_samples_ddim = self.cond_stage_model_decode(
+            samples_ddim
+        )  # samples_ddim: 1, 3, 128, 128 float32
+        torch.cuda.empty_cache()
+
+        # image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
+        # mask = torch.clamp((mask + 1.0) / 2.0, min=0.0, max=1.0)
+        inpainted_image = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
+
+        # inpainted = (1 - mask) * image + mask * predicted_image
+        inpainted_image = inpainted_image.cpu().numpy().transpose(0, 2, 3, 1)[0] * 255
+        inpainted_image = inpainted_image.astype(np.uint8)[:, :, ::-1]
+        return inpainted_image
+
+    def _norm(self, tensor):
+        return tensor * 2.0 - 1.0
diff --git a/iopaint/model/manga.py b/iopaint/model/manga.py
new file mode 100644
index 0000000000000000000000000000000000000000..1f58251891bdda54a0e40f373000d18bbea7014b
--- /dev/null
+++ b/iopaint/model/manga.py
@@ -0,0 +1,97 @@
+import os
+import random
+
+import cv2
+import numpy as np
+import torch
+import time
+from loguru import logger
+
+from iopaint.helper import get_cache_path_by_url, load_jit_model, download_model
+from .base import InpaintModel
+from iopaint.schema import InpaintRequest
+
+
+MANGA_INPAINTOR_MODEL_URL = os.environ.get(
+    "MANGA_INPAINTOR_MODEL_URL",
+    "https://github.com/Sanster/models/releases/download/manga/manga_inpaintor.jit",
+)
+MANGA_INPAINTOR_MODEL_MD5 = os.environ.get(
+    "MANGA_INPAINTOR_MODEL_MD5", "7d8b269c4613b6b3768af714610da86c"
+)
+
+MANGA_LINE_MODEL_URL = os.environ.get(
+    "MANGA_LINE_MODEL_URL",
+    "https://github.com/Sanster/models/releases/download/manga/erika.jit",
+)
+MANGA_LINE_MODEL_MD5 = os.environ.get(
+    "MANGA_LINE_MODEL_MD5", "0c926d5a4af8450b0d00bc5b9a095644"
+)
+
+
+class Manga(InpaintModel):
+    name = "manga"
+    pad_mod = 16
+    is_erase_model = True
+
+    def init_model(self, device, **kwargs):
+        self.inpaintor_model = load_jit_model(
+            MANGA_INPAINTOR_MODEL_URL, device, MANGA_INPAINTOR_MODEL_MD5
+        )
+        self.line_model = load_jit_model(
+            MANGA_LINE_MODEL_URL, device, MANGA_LINE_MODEL_MD5
+        )
+        self.seed = 42
+
+    @staticmethod
+    def download():
+        download_model(MANGA_INPAINTOR_MODEL_URL, MANGA_INPAINTOR_MODEL_MD5)
+        download_model(MANGA_LINE_MODEL_URL, MANGA_LINE_MODEL_MD5)
+
+    @staticmethod
+    def is_downloaded() -> bool:
+        model_paths = [
+            get_cache_path_by_url(MANGA_INPAINTOR_MODEL_URL),
+            get_cache_path_by_url(MANGA_LINE_MODEL_URL),
+        ]
+        return all([os.path.exists(it) for it in model_paths])
+
+    def forward(self, image, mask, config: InpaintRequest):
+        """
+        image: [H, W, C] RGB
+        mask: [H, W, 1]
+        return: BGR IMAGE
+        """
+        seed = self.seed
+        random.seed(seed)
+        np.random.seed(seed)
+        torch.manual_seed(seed)
+        torch.cuda.manual_seed_all(seed)
+
+        gray_img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
+        gray_img = torch.from_numpy(
+            gray_img[np.newaxis, np.newaxis, :, :].astype(np.float32)
+        ).to(self.device)
+        start = time.time()
+        lines = self.line_model(gray_img)
+        torch.cuda.empty_cache()
+        lines = torch.clamp(lines, 0, 255)
+        logger.info(f"erika_model time: {time.time() - start}")
+
+        mask = torch.from_numpy(mask[np.newaxis, :, :, :]).to(self.device)
+        mask = mask.permute(0, 3, 1, 2)
+        mask = torch.where(mask > 0.5, 1.0, 0.0)
+        noise = torch.randn_like(mask)
+        ones = torch.ones_like(mask)
+
+        gray_img = gray_img / 255 * 2 - 1.0
+        lines = lines / 255 * 2 - 1.0
+
+        start = time.time()
+        inpainted_image = self.inpaintor_model(gray_img, lines, mask, noise, ones)
+        logger.info(f"image_inpaintor_model time: {time.time() - start}")
+
+        cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy()
+        cur_res = (cur_res * 127.5 + 127.5).astype(np.uint8)
+        cur_res = cv2.cvtColor(cur_res, cv2.COLOR_GRAY2BGR)
+        return cur_res
diff --git a/iopaint/model/mat.py b/iopaint/model/mat.py
new file mode 100644
index 0000000000000000000000000000000000000000..0c5360faca1326413b4f0329799537176d25fa00
--- /dev/null
+++ b/iopaint/model/mat.py
@@ -0,0 +1,1945 @@
+import os
+import random
+
+import cv2
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.utils.checkpoint as checkpoint
+
+from iopaint.helper import (
+    load_model,
+    get_cache_path_by_url,
+    norm_img,
+    download_model,
+)
+from iopaint.schema import InpaintRequest
+from .base import InpaintModel
+from .utils import (
+    setup_filter,
+    Conv2dLayer,
+    FullyConnectedLayer,
+    conv2d_resample,
+    bias_act,
+    upsample2d,
+    activation_funcs,
+    MinibatchStdLayer,
+    to_2tuple,
+    normalize_2nd_moment,
+    set_seed,
+)
+
+
+class ModulatedConv2d(nn.Module):
+    def __init__(
+        self,
+        in_channels,  # Number of input channels.
+        out_channels,  # Number of output channels.
+        kernel_size,  # Width and height of the convolution kernel.
+        style_dim,  # dimension of the style code
+        demodulate=True,  # perfrom demodulation
+        up=1,  # Integer upsampling factor.
+        down=1,  # Integer downsampling factor.
+        resample_filter=[
+            1,
+            3,
+            3,
+            1,
+        ],  # Low-pass filter to apply when resampling activations.
+        conv_clamp=None,  # Clamp the output to +-X, None = disable clamping.
+    ):
+        super().__init__()
+        self.demodulate = demodulate
+
+        self.weight = torch.nn.Parameter(
+            torch.randn([1, out_channels, in_channels, kernel_size, kernel_size])
+        )
+        self.out_channels = out_channels
+        self.kernel_size = kernel_size
+        self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2))
+        self.padding = self.kernel_size // 2
+        self.up = up
+        self.down = down
+        self.register_buffer("resample_filter", setup_filter(resample_filter))
+        self.conv_clamp = conv_clamp
+
+        self.affine = FullyConnectedLayer(style_dim, in_channels, bias_init=1)
+
+    def forward(self, x, style):
+        batch, in_channels, height, width = x.shape
+        style = self.affine(style).view(batch, 1, in_channels, 1, 1)
+        weight = self.weight * self.weight_gain * style
+
+        if self.demodulate:
+            decoefs = (weight.pow(2).sum(dim=[2, 3, 4]) + 1e-8).rsqrt()
+            weight = weight * decoefs.view(batch, self.out_channels, 1, 1, 1)
+
+        weight = weight.view(
+            batch * self.out_channels, in_channels, self.kernel_size, self.kernel_size
+        )
+        x = x.view(1, batch * in_channels, height, width)
+        x = conv2d_resample(
+            x=x,
+            w=weight,
+            f=self.resample_filter,
+            up=self.up,
+            down=self.down,
+            padding=self.padding,
+            groups=batch,
+        )
+        out = x.view(batch, self.out_channels, *x.shape[2:])
+
+        return out
+
+
+class StyleConv(torch.nn.Module):
+    def __init__(
+        self,
+        in_channels,  # Number of input channels.
+        out_channels,  # Number of output channels.
+        style_dim,  # Intermediate latent (W) dimensionality.
+        resolution,  # Resolution of this layer.
+        kernel_size=3,  # Convolution kernel size.
+        up=1,  # Integer upsampling factor.
+        use_noise=False,  # Enable noise input?
+        activation="lrelu",  # Activation function: 'relu', 'lrelu', etc.
+        resample_filter=[
+            1,
+            3,
+            3,
+            1,
+        ],  # Low-pass filter to apply when resampling activations.
+        conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
+        demodulate=True,  # perform demodulation
+    ):
+        super().__init__()
+
+        self.conv = ModulatedConv2d(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            kernel_size=kernel_size,
+            style_dim=style_dim,
+            demodulate=demodulate,
+            up=up,
+            resample_filter=resample_filter,
+            conv_clamp=conv_clamp,
+        )
+
+        self.use_noise = use_noise
+        self.resolution = resolution
+        if use_noise:
+            self.register_buffer("noise_const", torch.randn([resolution, resolution]))
+            self.noise_strength = torch.nn.Parameter(torch.zeros([]))
+
+        self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
+        self.activation = activation
+        self.act_gain = activation_funcs[activation].def_gain
+        self.conv_clamp = conv_clamp
+
+    def forward(self, x, style, noise_mode="random", gain=1):
+        x = self.conv(x, style)
+
+        assert noise_mode in ["random", "const", "none"]
+
+        if self.use_noise:
+            if noise_mode == "random":
+                xh, xw = x.size()[-2:]
+                noise = (
+                    torch.randn([x.shape[0], 1, xh, xw], device=x.device)
+                    * self.noise_strength
+                )
+            if noise_mode == "const":
+                noise = self.noise_const * self.noise_strength
+            x = x + noise
+
+        act_gain = self.act_gain * gain
+        act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
+        out = bias_act(
+            x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp
+        )
+
+        return out
+
+
+class ToRGB(torch.nn.Module):
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        style_dim,
+        kernel_size=1,
+        resample_filter=[1, 3, 3, 1],
+        conv_clamp=None,
+        demodulate=False,
+    ):
+        super().__init__()
+
+        self.conv = ModulatedConv2d(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            kernel_size=kernel_size,
+            style_dim=style_dim,
+            demodulate=demodulate,
+            resample_filter=resample_filter,
+            conv_clamp=conv_clamp,
+        )
+        self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
+        self.register_buffer("resample_filter", setup_filter(resample_filter))
+        self.conv_clamp = conv_clamp
+
+    def forward(self, x, style, skip=None):
+        x = self.conv(x, style)
+        out = bias_act(x, self.bias, clamp=self.conv_clamp)
+
+        if skip is not None:
+            if skip.shape != out.shape:
+                skip = upsample2d(skip, self.resample_filter)
+            out = out + skip
+
+        return out
+
+
+def get_style_code(a, b):
+    return torch.cat([a, b], dim=1)
+
+
+class DecBlockFirst(nn.Module):
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        activation,
+        style_dim,
+        use_noise,
+        demodulate,
+        img_channels,
+    ):
+        super().__init__()
+        self.fc = FullyConnectedLayer(
+            in_features=in_channels * 2,
+            out_features=in_channels * 4**2,
+            activation=activation,
+        )
+        self.conv = StyleConv(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            style_dim=style_dim,
+            resolution=4,
+            kernel_size=3,
+            use_noise=use_noise,
+            activation=activation,
+            demodulate=demodulate,
+        )
+        self.toRGB = ToRGB(
+            in_channels=out_channels,
+            out_channels=img_channels,
+            style_dim=style_dim,
+            kernel_size=1,
+            demodulate=False,
+        )
+
+    def forward(self, x, ws, gs, E_features, noise_mode="random"):
+        x = self.fc(x).view(x.shape[0], -1, 4, 4)
+        x = x + E_features[2]
+        style = get_style_code(ws[:, 0], gs)
+        x = self.conv(x, style, noise_mode=noise_mode)
+        style = get_style_code(ws[:, 1], gs)
+        img = self.toRGB(x, style, skip=None)
+
+        return x, img
+
+
+class DecBlockFirstV2(nn.Module):
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        activation,
+        style_dim,
+        use_noise,
+        demodulate,
+        img_channels,
+    ):
+        super().__init__()
+        self.conv0 = Conv2dLayer(
+            in_channels=in_channels,
+            out_channels=in_channels,
+            kernel_size=3,
+            activation=activation,
+        )
+        self.conv1 = StyleConv(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            style_dim=style_dim,
+            resolution=4,
+            kernel_size=3,
+            use_noise=use_noise,
+            activation=activation,
+            demodulate=demodulate,
+        )
+        self.toRGB = ToRGB(
+            in_channels=out_channels,
+            out_channels=img_channels,
+            style_dim=style_dim,
+            kernel_size=1,
+            demodulate=False,
+        )
+
+    def forward(self, x, ws, gs, E_features, noise_mode="random"):
+        # x = self.fc(x).view(x.shape[0], -1, 4, 4)
+        x = self.conv0(x)
+        x = x + E_features[2]
+        style = get_style_code(ws[:, 0], gs)
+        x = self.conv1(x, style, noise_mode=noise_mode)
+        style = get_style_code(ws[:, 1], gs)
+        img = self.toRGB(x, style, skip=None)
+
+        return x, img
+
+
+class DecBlock(nn.Module):
+    def __init__(
+        self,
+        res,
+        in_channels,
+        out_channels,
+        activation,
+        style_dim,
+        use_noise,
+        demodulate,
+        img_channels,
+    ):  # res = 2, ..., resolution_log2
+        super().__init__()
+        self.res = res
+
+        self.conv0 = StyleConv(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            style_dim=style_dim,
+            resolution=2**res,
+            kernel_size=3,
+            up=2,
+            use_noise=use_noise,
+            activation=activation,
+            demodulate=demodulate,
+        )
+        self.conv1 = StyleConv(
+            in_channels=out_channels,
+            out_channels=out_channels,
+            style_dim=style_dim,
+            resolution=2**res,
+            kernel_size=3,
+            use_noise=use_noise,
+            activation=activation,
+            demodulate=demodulate,
+        )
+        self.toRGB = ToRGB(
+            in_channels=out_channels,
+            out_channels=img_channels,
+            style_dim=style_dim,
+            kernel_size=1,
+            demodulate=False,
+        )
+
+    def forward(self, x, img, ws, gs, E_features, noise_mode="random"):
+        style = get_style_code(ws[:, self.res * 2 - 5], gs)
+        x = self.conv0(x, style, noise_mode=noise_mode)
+        x = x + E_features[self.res]
+        style = get_style_code(ws[:, self.res * 2 - 4], gs)
+        x = self.conv1(x, style, noise_mode=noise_mode)
+        style = get_style_code(ws[:, self.res * 2 - 3], gs)
+        img = self.toRGB(x, style, skip=img)
+
+        return x, img
+
+
+class MappingNet(torch.nn.Module):
+    def __init__(
+        self,
+        z_dim,  # Input latent (Z) dimensionality, 0 = no latent.
+        c_dim,  # Conditioning label (C) dimensionality, 0 = no label.
+        w_dim,  # Intermediate latent (W) dimensionality.
+        num_ws,  # Number of intermediate latents to output, None = do not broadcast.
+        num_layers=8,  # Number of mapping layers.
+        embed_features=None,  # Label embedding dimensionality, None = same as w_dim.
+        layer_features=None,  # Number of intermediate features in the mapping layers, None = same as w_dim.
+        activation="lrelu",  # Activation function: 'relu', 'lrelu', etc.
+        lr_multiplier=0.01,  # Learning rate multiplier for the mapping layers.
+        w_avg_beta=0.995,  # Decay for tracking the moving average of W during training, None = do not track.
+        torch_dtype=torch.float32,
+    ):
+        super().__init__()
+        self.z_dim = z_dim
+        self.c_dim = c_dim
+        self.w_dim = w_dim
+        self.num_ws = num_ws
+        self.num_layers = num_layers
+        self.w_avg_beta = w_avg_beta
+        self.torch_dtype = torch_dtype
+
+        if embed_features is None:
+            embed_features = w_dim
+        if c_dim == 0:
+            embed_features = 0
+        if layer_features is None:
+            layer_features = w_dim
+        features_list = (
+            [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]
+        )
+
+        if c_dim > 0:
+            self.embed = FullyConnectedLayer(c_dim, embed_features)
+        for idx in range(num_layers):
+            in_features = features_list[idx]
+            out_features = features_list[idx + 1]
+            layer = FullyConnectedLayer(
+                in_features,
+                out_features,
+                activation=activation,
+                lr_multiplier=lr_multiplier,
+            )
+            setattr(self, f"fc{idx}", layer)
+
+        if num_ws is not None and w_avg_beta is not None:
+            self.register_buffer("w_avg", torch.zeros([w_dim]))
+
+    def forward(
+        self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False
+    ):
+        # Embed, normalize, and concat inputs.
+        x = None
+        if self.z_dim > 0:
+            x = normalize_2nd_moment(z)
+        if self.c_dim > 0:
+            y = normalize_2nd_moment(self.embed(c))
+            x = torch.cat([x, y], dim=1) if x is not None else y
+
+        # Main layers.
+        for idx in range(self.num_layers):
+            layer = getattr(self, f"fc{idx}")
+            x = layer(x)
+
+        # Update moving average of W.
+        if self.w_avg_beta is not None and self.training and not skip_w_avg_update:
+            self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))
+
+        # Broadcast.
+        if self.num_ws is not None:
+            x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
+
+        # Apply truncation.
+        if truncation_psi != 1:
+            assert self.w_avg_beta is not None
+            if self.num_ws is None or truncation_cutoff is None:
+                x = self.w_avg.lerp(x, truncation_psi)
+            else:
+                x[:, :truncation_cutoff] = self.w_avg.lerp(
+                    x[:, :truncation_cutoff], truncation_psi
+                )
+
+        return x
+
+
+class DisFromRGB(nn.Module):
+    def __init__(
+        self, in_channels, out_channels, activation
+    ):  # res = 2, ..., resolution_log2
+        super().__init__()
+        self.conv = Conv2dLayer(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            kernel_size=1,
+            activation=activation,
+        )
+
+    def forward(self, x):
+        return self.conv(x)
+
+
+class DisBlock(nn.Module):
+    def __init__(
+        self, in_channels, out_channels, activation
+    ):  # res = 2, ..., resolution_log2
+        super().__init__()
+        self.conv0 = Conv2dLayer(
+            in_channels=in_channels,
+            out_channels=in_channels,
+            kernel_size=3,
+            activation=activation,
+        )
+        self.conv1 = Conv2dLayer(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            kernel_size=3,
+            down=2,
+            activation=activation,
+        )
+        self.skip = Conv2dLayer(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            kernel_size=1,
+            down=2,
+            bias=False,
+        )
+
+    def forward(self, x):
+        skip = self.skip(x, gain=np.sqrt(0.5))
+        x = self.conv0(x)
+        x = self.conv1(x, gain=np.sqrt(0.5))
+        out = skip + x
+
+        return out
+
+
+class Discriminator(torch.nn.Module):
+    def __init__(
+        self,
+        c_dim,  # Conditioning label (C) dimensionality.
+        img_resolution,  # Input resolution.
+        img_channels,  # Number of input color channels.
+        channel_base=32768,  # Overall multiplier for the number of channels.
+        channel_max=512,  # Maximum number of channels in any layer.
+        channel_decay=1,
+        cmap_dim=None,  # Dimensionality of mapped conditioning label, None = default.
+        activation="lrelu",
+        mbstd_group_size=4,  # Group size for the minibatch standard deviation layer, None = entire minibatch.
+        mbstd_num_channels=1,  # Number of features for the minibatch standard deviation layer, 0 = disable.
+    ):
+        super().__init__()
+        self.c_dim = c_dim
+        self.img_resolution = img_resolution
+        self.img_channels = img_channels
+
+        resolution_log2 = int(np.log2(img_resolution))
+        assert img_resolution == 2**resolution_log2 and img_resolution >= 4
+        self.resolution_log2 = resolution_log2
+
+        def nf(stage):
+            return np.clip(
+                int(channel_base / 2 ** (stage * channel_decay)), 1, channel_max
+            )
+
+        if cmap_dim == None:
+            cmap_dim = nf(2)
+        if c_dim == 0:
+            cmap_dim = 0
+        self.cmap_dim = cmap_dim
+
+        if c_dim > 0:
+            self.mapping = MappingNet(
+                z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None
+            )
+
+        Dis = [DisFromRGB(img_channels + 1, nf(resolution_log2), activation)]
+        for res in range(resolution_log2, 2, -1):
+            Dis.append(DisBlock(nf(res), nf(res - 1), activation))
+
+        if mbstd_num_channels > 0:
+            Dis.append(
+                MinibatchStdLayer(
+                    group_size=mbstd_group_size, num_channels=mbstd_num_channels
+                )
+            )
+        Dis.append(
+            Conv2dLayer(
+                nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation
+            )
+        )
+        self.Dis = nn.Sequential(*Dis)
+
+        self.fc0 = FullyConnectedLayer(nf(2) * 4**2, nf(2), activation=activation)
+        self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim)
+
+    def forward(self, images_in, masks_in, c):
+        x = torch.cat([masks_in - 0.5, images_in], dim=1)
+        x = self.Dis(x)
+        x = self.fc1(self.fc0(x.flatten(start_dim=1)))
+
+        if self.c_dim > 0:
+            cmap = self.mapping(None, c)
+
+        if self.cmap_dim > 0:
+            x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
+
+        return x
+
+
+def nf(stage, channel_base=32768, channel_decay=1.0, channel_max=512):
+    NF = {512: 64, 256: 128, 128: 256, 64: 512, 32: 512, 16: 512, 8: 512, 4: 512}
+    return NF[2**stage]
+
+
+class Mlp(nn.Module):
+    def __init__(
+        self,
+        in_features,
+        hidden_features=None,
+        out_features=None,
+        act_layer=nn.GELU,
+        drop=0.0,
+    ):
+        super().__init__()
+        out_features = out_features or in_features
+        hidden_features = hidden_features or in_features
+        self.fc1 = FullyConnectedLayer(
+            in_features=in_features, out_features=hidden_features, activation="lrelu"
+        )
+        self.fc2 = FullyConnectedLayer(
+            in_features=hidden_features, out_features=out_features
+        )
+
+    def forward(self, x):
+        x = self.fc1(x)
+        x = self.fc2(x)
+        return x
+
+
+def window_partition(x, window_size):
+    """
+    Args:
+        x: (B, H, W, C)
+        window_size (int): window size
+    Returns:
+        windows: (num_windows*B, window_size, window_size, C)
+    """
+    B, H, W, C = x.shape
+    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
+    windows = (
+        x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
+    )
+    return windows
+
+
+def window_reverse(windows, window_size: int, H: int, W: int):
+    """
+    Args:
+        windows: (num_windows*B, window_size, window_size, C)
+        window_size (int): Window size
+        H (int): Height of image
+        W (int): Width of image
+    Returns:
+        x: (B, H, W, C)
+    """
+    B = int(windows.shape[0] / (H * W / window_size / window_size))
+    # B = windows.shape[0] / (H * W / window_size / window_size)
+    x = windows.view(
+        B, H // window_size, W // window_size, window_size, window_size, -1
+    )
+    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
+    return x
+
+
+class Conv2dLayerPartial(nn.Module):
+    def __init__(
+        self,
+        in_channels,  # Number of input channels.
+        out_channels,  # Number of output channels.
+        kernel_size,  # Width and height of the convolution kernel.
+        bias=True,  # Apply additive bias before the activation function?
+        activation="linear",  # Activation function: 'relu', 'lrelu', etc.
+        up=1,  # Integer upsampling factor.
+        down=1,  # Integer downsampling factor.
+        resample_filter=[
+            1,
+            3,
+            3,
+            1,
+        ],  # Low-pass filter to apply when resampling activations.
+        conv_clamp=None,  # Clamp the output to +-X, None = disable clamping.
+        trainable=True,  # Update the weights of this layer during training?
+    ):
+        super().__init__()
+        self.conv = Conv2dLayer(
+            in_channels,
+            out_channels,
+            kernel_size,
+            bias,
+            activation,
+            up,
+            down,
+            resample_filter,
+            conv_clamp,
+            trainable,
+        )
+
+        self.weight_maskUpdater = torch.ones(1, 1, kernel_size, kernel_size)
+        self.slide_winsize = kernel_size**2
+        self.stride = down
+        self.padding = kernel_size // 2 if kernel_size % 2 == 1 else 0
+
+    def forward(self, x, mask=None):
+        if mask is not None:
+            with torch.no_grad():
+                if self.weight_maskUpdater.type() != x.type():
+                    self.weight_maskUpdater = self.weight_maskUpdater.to(x)
+                update_mask = F.conv2d(
+                    mask,
+                    self.weight_maskUpdater,
+                    bias=None,
+                    stride=self.stride,
+                    padding=self.padding,
+                )
+                mask_ratio = self.slide_winsize / (update_mask.to(torch.float32) + 1e-8)
+                update_mask = torch.clamp(update_mask, 0, 1)  # 0 or 1
+                mask_ratio = torch.mul(mask_ratio, update_mask).to(x.dtype)
+            x = self.conv(x)
+            x = torch.mul(x, mask_ratio)
+            return x, update_mask
+        else:
+            x = self.conv(x)
+            return x, None
+
+
+class WindowAttention(nn.Module):
+    r"""Window based multi-head self attention (W-MSA) module with relative position bias.
+    It supports both of shifted and non-shifted window.
+    Args:
+        dim (int): Number of input channels.
+        window_size (tuple[int]): The height and width of the window.
+        num_heads (int): Number of attention heads.
+        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
+        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
+        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
+        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
+    """
+
+    def __init__(
+        self,
+        dim,
+        window_size,
+        num_heads,
+        down_ratio=1,
+        qkv_bias=True,
+        qk_scale=None,
+        attn_drop=0.0,
+        proj_drop=0.0,
+    ):
+        super().__init__()
+        self.dim = dim
+        self.window_size = window_size  # Wh, Ww
+        self.num_heads = num_heads
+        head_dim = dim // num_heads
+        self.scale = qk_scale or head_dim**-0.5
+
+        self.q = FullyConnectedLayer(in_features=dim, out_features=dim)
+        self.k = FullyConnectedLayer(in_features=dim, out_features=dim)
+        self.v = FullyConnectedLayer(in_features=dim, out_features=dim)
+        self.proj = FullyConnectedLayer(in_features=dim, out_features=dim)
+
+        self.softmax = nn.Softmax(dim=-1)
+
+    def forward(self, x, mask_windows=None, mask=None):
+        """
+        Args:
+            x: input features with shape of (num_windows*B, N, C)
+            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
+        """
+        B_, N, C = x.shape
+        norm_x = F.normalize(x, p=2.0, dim=-1, eps=torch.finfo(x.dtype).eps)
+        q = (
+            self.q(norm_x)
+            .reshape(B_, N, self.num_heads, C // self.num_heads)
+            .permute(0, 2, 1, 3)
+        )
+        k = (
+            self.k(norm_x)
+            .view(B_, -1, self.num_heads, C // self.num_heads)
+            .permute(0, 2, 3, 1)
+        )
+        v = (
+            self.v(x)
+            .view(B_, -1, self.num_heads, C // self.num_heads)
+            .permute(0, 2, 1, 3)
+        )
+
+        attn = (q @ k) * self.scale
+
+        if mask is not None:
+            nW = mask.shape[0]
+            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
+                1
+            ).unsqueeze(0)
+            attn = attn.view(-1, self.num_heads, N, N)
+
+        if mask_windows is not None:
+            attn_mask_windows = mask_windows.squeeze(-1).unsqueeze(1).unsqueeze(1)
+            attn = attn + attn_mask_windows.masked_fill(
+                attn_mask_windows == 0, float(-100.0)
+            ).masked_fill(attn_mask_windows == 1, float(0.0))
+            with torch.no_grad():
+                mask_windows = torch.clamp(
+                    torch.sum(mask_windows, dim=1, keepdim=True), 0, 1
+                ).repeat(1, N, 1)
+
+        attn = self.softmax(attn)
+        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
+        x = self.proj(x)
+        return x, mask_windows
+
+
+class SwinTransformerBlock(nn.Module):
+    r"""Swin Transformer Block.
+    Args:
+        dim (int): Number of input channels.
+        input_resolution (tuple[int]): Input resulotion.
+        num_heads (int): Number of attention heads.
+        window_size (int): Window size.
+        shift_size (int): Shift size for SW-MSA.
+        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
+        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
+        drop (float, optional): Dropout rate. Default: 0.0
+        attn_drop (float, optional): Attention dropout rate. Default: 0.0
+        drop_path (float, optional): Stochastic depth rate. Default: 0.0
+        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
+        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
+    """
+
+    def __init__(
+        self,
+        dim,
+        input_resolution,
+        num_heads,
+        down_ratio=1,
+        window_size=7,
+        shift_size=0,
+        mlp_ratio=4.0,
+        qkv_bias=True,
+        qk_scale=None,
+        drop=0.0,
+        attn_drop=0.0,
+        drop_path=0.0,
+        act_layer=nn.GELU,
+        norm_layer=nn.LayerNorm,
+    ):
+        super().__init__()
+        self.dim = dim
+        self.input_resolution = input_resolution
+        self.num_heads = num_heads
+        self.window_size = window_size
+        self.shift_size = shift_size
+        self.mlp_ratio = mlp_ratio
+        if min(self.input_resolution) <= self.window_size:
+            # if window size is larger than input resolution, we don't partition windows
+            self.shift_size = 0
+            self.window_size = min(self.input_resolution)
+        assert (
+            0 <= self.shift_size < self.window_size
+        ), "shift_size must in 0-window_size"
+
+        if self.shift_size > 0:
+            down_ratio = 1
+        self.attn = WindowAttention(
+            dim,
+            window_size=to_2tuple(self.window_size),
+            num_heads=num_heads,
+            down_ratio=down_ratio,
+            qkv_bias=qkv_bias,
+            qk_scale=qk_scale,
+            attn_drop=attn_drop,
+            proj_drop=drop,
+        )
+
+        self.fuse = FullyConnectedLayer(
+            in_features=dim * 2, out_features=dim, activation="lrelu"
+        )
+
+        mlp_hidden_dim = int(dim * mlp_ratio)
+        self.mlp = Mlp(
+            in_features=dim,
+            hidden_features=mlp_hidden_dim,
+            act_layer=act_layer,
+            drop=drop,
+        )
+
+        if self.shift_size > 0:
+            attn_mask = self.calculate_mask(self.input_resolution)
+        else:
+            attn_mask = None
+
+        self.register_buffer("attn_mask", attn_mask)
+
+    def calculate_mask(self, x_size):
+        # calculate attention mask for SW-MSA
+        H, W = x_size
+        img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
+        h_slices = (
+            slice(0, -self.window_size),
+            slice(-self.window_size, -self.shift_size),
+            slice(-self.shift_size, None),
+        )
+        w_slices = (
+            slice(0, -self.window_size),
+            slice(-self.window_size, -self.shift_size),
+            slice(-self.shift_size, None),
+        )
+        cnt = 0
+        for h in h_slices:
+            for w in w_slices:
+                img_mask[:, h, w, :] = cnt
+                cnt += 1
+
+        mask_windows = window_partition(
+            img_mask, self.window_size
+        )  # nW, window_size, window_size, 1
+        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
+        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
+        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
+            attn_mask == 0, float(0.0)
+        )
+
+        return attn_mask
+
+    def forward(self, x, x_size, mask=None):
+        # H, W = self.input_resolution
+        H, W = x_size
+        B, L, C = x.shape
+        # assert L == H * W, "input feature has wrong size"
+
+        shortcut = x
+        x = x.view(B, H, W, C)
+        if mask is not None:
+            mask = mask.view(B, H, W, 1)
+
+        # cyclic shift
+        if self.shift_size > 0:
+            shifted_x = torch.roll(
+                x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
+            )
+            if mask is not None:
+                shifted_mask = torch.roll(
+                    mask, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
+                )
+        else:
+            shifted_x = x
+            if mask is not None:
+                shifted_mask = mask
+
+        # partition windows
+        x_windows = window_partition(
+            shifted_x, self.window_size
+        )  # nW*B, window_size, window_size, C
+        x_windows = x_windows.view(
+            -1, self.window_size * self.window_size, C
+        )  # nW*B, window_size*window_size, C
+        if mask is not None:
+            mask_windows = window_partition(shifted_mask, self.window_size)
+            mask_windows = mask_windows.view(-1, self.window_size * self.window_size, 1)
+        else:
+            mask_windows = None
+
+        # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
+        if self.input_resolution == x_size:
+            attn_windows, mask_windows = self.attn(
+                x_windows, mask_windows, mask=self.attn_mask
+            )  # nW*B, window_size*window_size, C
+        else:
+            attn_windows, mask_windows = self.attn(
+                x_windows,
+                mask_windows,
+                mask=self.calculate_mask(x_size).to(x.dtype).to(x.device),
+            )  # nW*B, window_size*window_size, C
+
+        # merge windows
+        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
+        shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C
+        if mask is not None:
+            mask_windows = mask_windows.view(-1, self.window_size, self.window_size, 1)
+            shifted_mask = window_reverse(mask_windows, self.window_size, H, W)
+
+        # reverse cyclic shift
+        if self.shift_size > 0:
+            x = torch.roll(
+                shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
+            )
+            if mask is not None:
+                mask = torch.roll(
+                    shifted_mask, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
+                )
+        else:
+            x = shifted_x
+            if mask is not None:
+                mask = shifted_mask
+        x = x.view(B, H * W, C)
+        if mask is not None:
+            mask = mask.view(B, H * W, 1)
+
+        # FFN
+        x = self.fuse(torch.cat([shortcut, x], dim=-1))
+        x = self.mlp(x)
+
+        return x, mask
+
+
+class PatchMerging(nn.Module):
+    def __init__(self, in_channels, out_channels, down=2):
+        super().__init__()
+        self.conv = Conv2dLayerPartial(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            kernel_size=3,
+            activation="lrelu",
+            down=down,
+        )
+        self.down = down
+
+    def forward(self, x, x_size, mask=None):
+        x = token2feature(x, x_size)
+        if mask is not None:
+            mask = token2feature(mask, x_size)
+        x, mask = self.conv(x, mask)
+        if self.down != 1:
+            ratio = 1 / self.down
+            x_size = (int(x_size[0] * ratio), int(x_size[1] * ratio))
+        x = feature2token(x)
+        if mask is not None:
+            mask = feature2token(mask)
+        return x, x_size, mask
+
+
+class PatchUpsampling(nn.Module):
+    def __init__(self, in_channels, out_channels, up=2):
+        super().__init__()
+        self.conv = Conv2dLayerPartial(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            kernel_size=3,
+            activation="lrelu",
+            up=up,
+        )
+        self.up = up
+
+    def forward(self, x, x_size, mask=None):
+        x = token2feature(x, x_size)
+        if mask is not None:
+            mask = token2feature(mask, x_size)
+        x, mask = self.conv(x, mask)
+        if self.up != 1:
+            x_size = (int(x_size[0] * self.up), int(x_size[1] * self.up))
+        x = feature2token(x)
+        if mask is not None:
+            mask = feature2token(mask)
+        return x, x_size, mask
+
+
+class BasicLayer(nn.Module):
+    """A basic Swin Transformer layer for one stage.
+    Args:
+        dim (int): Number of input channels.
+        input_resolution (tuple[int]): Input resolution.
+        depth (int): Number of blocks.
+        num_heads (int): Number of attention heads.
+        window_size (int): Local window size.
+        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
+        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
+        drop (float, optional): Dropout rate. Default: 0.0
+        attn_drop (float, optional): Attention dropout rate. Default: 0.0
+        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
+        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
+        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
+    """
+
+    def __init__(
+        self,
+        dim,
+        input_resolution,
+        depth,
+        num_heads,
+        window_size,
+        down_ratio=1,
+        mlp_ratio=2.0,
+        qkv_bias=True,
+        qk_scale=None,
+        drop=0.0,
+        attn_drop=0.0,
+        drop_path=0.0,
+        norm_layer=nn.LayerNorm,
+        downsample=None,
+        use_checkpoint=False,
+    ):
+        super().__init__()
+        self.dim = dim
+        self.input_resolution = input_resolution
+        self.depth = depth
+        self.use_checkpoint = use_checkpoint
+
+        # patch merging layer
+        if downsample is not None:
+            # self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
+            self.downsample = downsample
+        else:
+            self.downsample = None
+
+        # build blocks
+        self.blocks = nn.ModuleList(
+            [
+                SwinTransformerBlock(
+                    dim=dim,
+                    input_resolution=input_resolution,
+                    num_heads=num_heads,
+                    down_ratio=down_ratio,
+                    window_size=window_size,
+                    shift_size=0 if (i % 2 == 0) else window_size // 2,
+                    mlp_ratio=mlp_ratio,
+                    qkv_bias=qkv_bias,
+                    qk_scale=qk_scale,
+                    drop=drop,
+                    attn_drop=attn_drop,
+                    drop_path=drop_path[i]
+                    if isinstance(drop_path, list)
+                    else drop_path,
+                    norm_layer=norm_layer,
+                )
+                for i in range(depth)
+            ]
+        )
+
+        self.conv = Conv2dLayerPartial(
+            in_channels=dim, out_channels=dim, kernel_size=3, activation="lrelu"
+        )
+
+    def forward(self, x, x_size, mask=None):
+        if self.downsample is not None:
+            x, x_size, mask = self.downsample(x, x_size, mask)
+        identity = x
+        for blk in self.blocks:
+            if self.use_checkpoint:
+                x, mask = checkpoint.checkpoint(blk, x, x_size, mask)
+            else:
+                x, mask = blk(x, x_size, mask)
+        if mask is not None:
+            mask = token2feature(mask, x_size)
+        x, mask = self.conv(token2feature(x, x_size), mask)
+        x = feature2token(x) + identity
+        if mask is not None:
+            mask = feature2token(mask)
+        return x, x_size, mask
+
+
+class ToToken(nn.Module):
+    def __init__(self, in_channels=3, dim=128, kernel_size=5, stride=1):
+        super().__init__()
+
+        self.proj = Conv2dLayerPartial(
+            in_channels=in_channels,
+            out_channels=dim,
+            kernel_size=kernel_size,
+            activation="lrelu",
+        )
+
+    def forward(self, x, mask):
+        x, mask = self.proj(x, mask)
+
+        return x, mask
+
+
+class EncFromRGB(nn.Module):
+    def __init__(
+        self, in_channels, out_channels, activation
+    ):  # res = 2, ..., resolution_log2
+        super().__init__()
+        self.conv0 = Conv2dLayer(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            kernel_size=1,
+            activation=activation,
+        )
+        self.conv1 = Conv2dLayer(
+            in_channels=out_channels,
+            out_channels=out_channels,
+            kernel_size=3,
+            activation=activation,
+        )
+
+    def forward(self, x):
+        x = self.conv0(x)
+        x = self.conv1(x)
+
+        return x
+
+
+class ConvBlockDown(nn.Module):
+    def __init__(
+        self, in_channels, out_channels, activation
+    ):  # res = 2, ..., resolution_log
+        super().__init__()
+
+        self.conv0 = Conv2dLayer(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            kernel_size=3,
+            activation=activation,
+            down=2,
+        )
+        self.conv1 = Conv2dLayer(
+            in_channels=out_channels,
+            out_channels=out_channels,
+            kernel_size=3,
+            activation=activation,
+        )
+
+    def forward(self, x):
+        x = self.conv0(x)
+        x = self.conv1(x)
+
+        return x
+
+
+def token2feature(x, x_size):
+    B, N, C = x.shape
+    h, w = x_size
+    x = x.permute(0, 2, 1).reshape(B, C, h, w)
+    return x
+
+
+def feature2token(x):
+    B, C, H, W = x.shape
+    x = x.view(B, C, -1).transpose(1, 2)
+    return x
+
+
+class Encoder(nn.Module):
+    def __init__(
+        self,
+        res_log2,
+        img_channels,
+        activation,
+        patch_size=5,
+        channels=16,
+        drop_path_rate=0.1,
+    ):
+        super().__init__()
+
+        self.resolution = []
+
+        for idx, i in enumerate(range(res_log2, 3, -1)):  # from input size to 16x16
+            res = 2**i
+            self.resolution.append(res)
+            if i == res_log2:
+                block = EncFromRGB(img_channels * 2 + 1, nf(i), activation)
+            else:
+                block = ConvBlockDown(nf(i + 1), nf(i), activation)
+            setattr(self, "EncConv_Block_%dx%d" % (res, res), block)
+
+    def forward(self, x):
+        out = {}
+        for res in self.resolution:
+            res_log2 = int(np.log2(res))
+            x = getattr(self, "EncConv_Block_%dx%d" % (res, res))(x)
+            out[res_log2] = x
+
+        return out
+
+
+class ToStyle(nn.Module):
+    def __init__(self, in_channels, out_channels, activation, drop_rate):
+        super().__init__()
+        self.conv = nn.Sequential(
+            Conv2dLayer(
+                in_channels=in_channels,
+                out_channels=in_channels,
+                kernel_size=3,
+                activation=activation,
+                down=2,
+            ),
+            Conv2dLayer(
+                in_channels=in_channels,
+                out_channels=in_channels,
+                kernel_size=3,
+                activation=activation,
+                down=2,
+            ),
+            Conv2dLayer(
+                in_channels=in_channels,
+                out_channels=in_channels,
+                kernel_size=3,
+                activation=activation,
+                down=2,
+            ),
+        )
+
+        self.pool = nn.AdaptiveAvgPool2d(1)
+        self.fc = FullyConnectedLayer(
+            in_features=in_channels, out_features=out_channels, activation=activation
+        )
+        # self.dropout = nn.Dropout(drop_rate)
+
+    def forward(self, x):
+        x = self.conv(x)
+        x = self.pool(x)
+        x = self.fc(x.flatten(start_dim=1))
+        # x = self.dropout(x)
+
+        return x
+
+
+class DecBlockFirstV2(nn.Module):
+    def __init__(
+        self,
+        res,
+        in_channels,
+        out_channels,
+        activation,
+        style_dim,
+        use_noise,
+        demodulate,
+        img_channels,
+    ):
+        super().__init__()
+        self.res = res
+
+        self.conv0 = Conv2dLayer(
+            in_channels=in_channels,
+            out_channels=in_channels,
+            kernel_size=3,
+            activation=activation,
+        )
+        self.conv1 = StyleConv(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            style_dim=style_dim,
+            resolution=2**res,
+            kernel_size=3,
+            use_noise=use_noise,
+            activation=activation,
+            demodulate=demodulate,
+        )
+        self.toRGB = ToRGB(
+            in_channels=out_channels,
+            out_channels=img_channels,
+            style_dim=style_dim,
+            kernel_size=1,
+            demodulate=False,
+        )
+
+    def forward(self, x, ws, gs, E_features, noise_mode="random"):
+        # x = self.fc(x).view(x.shape[0], -1, 4, 4)
+        x = self.conv0(x)
+        x = x + E_features[self.res]
+        style = get_style_code(ws[:, 0], gs)
+        x = self.conv1(x, style, noise_mode=noise_mode)
+        style = get_style_code(ws[:, 1], gs)
+        img = self.toRGB(x, style, skip=None)
+
+        return x, img
+
+
+class DecBlock(nn.Module):
+    def __init__(
+        self,
+        res,
+        in_channels,
+        out_channels,
+        activation,
+        style_dim,
+        use_noise,
+        demodulate,
+        img_channels,
+    ):  # res = 4, ..., resolution_log2
+        super().__init__()
+        self.res = res
+
+        self.conv0 = StyleConv(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            style_dim=style_dim,
+            resolution=2**res,
+            kernel_size=3,
+            up=2,
+            use_noise=use_noise,
+            activation=activation,
+            demodulate=demodulate,
+        )
+        self.conv1 = StyleConv(
+            in_channels=out_channels,
+            out_channels=out_channels,
+            style_dim=style_dim,
+            resolution=2**res,
+            kernel_size=3,
+            use_noise=use_noise,
+            activation=activation,
+            demodulate=demodulate,
+        )
+        self.toRGB = ToRGB(
+            in_channels=out_channels,
+            out_channels=img_channels,
+            style_dim=style_dim,
+            kernel_size=1,
+            demodulate=False,
+        )
+
+    def forward(self, x, img, ws, gs, E_features, noise_mode="random"):
+        style = get_style_code(ws[:, self.res * 2 - 9], gs)
+        x = self.conv0(x, style, noise_mode=noise_mode)
+        x = x + E_features[self.res]
+        style = get_style_code(ws[:, self.res * 2 - 8], gs)
+        x = self.conv1(x, style, noise_mode=noise_mode)
+        style = get_style_code(ws[:, self.res * 2 - 7], gs)
+        img = self.toRGB(x, style, skip=img)
+
+        return x, img
+
+
+class Decoder(nn.Module):
+    def __init__(
+        self, res_log2, activation, style_dim, use_noise, demodulate, img_channels
+    ):
+        super().__init__()
+        self.Dec_16x16 = DecBlockFirstV2(
+            4, nf(4), nf(4), activation, style_dim, use_noise, demodulate, img_channels
+        )
+        for res in range(5, res_log2 + 1):
+            setattr(
+                self,
+                "Dec_%dx%d" % (2**res, 2**res),
+                DecBlock(
+                    res,
+                    nf(res - 1),
+                    nf(res),
+                    activation,
+                    style_dim,
+                    use_noise,
+                    demodulate,
+                    img_channels,
+                ),
+            )
+        self.res_log2 = res_log2
+
+    def forward(self, x, ws, gs, E_features, noise_mode="random"):
+        x, img = self.Dec_16x16(x, ws, gs, E_features, noise_mode=noise_mode)
+        for res in range(5, self.res_log2 + 1):
+            block = getattr(self, "Dec_%dx%d" % (2**res, 2**res))
+            x, img = block(x, img, ws, gs, E_features, noise_mode=noise_mode)
+
+        return img
+
+
+class DecStyleBlock(nn.Module):
+    def __init__(
+        self,
+        res,
+        in_channels,
+        out_channels,
+        activation,
+        style_dim,
+        use_noise,
+        demodulate,
+        img_channels,
+    ):
+        super().__init__()
+        self.res = res
+
+        self.conv0 = StyleConv(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            style_dim=style_dim,
+            resolution=2**res,
+            kernel_size=3,
+            up=2,
+            use_noise=use_noise,
+            activation=activation,
+            demodulate=demodulate,
+        )
+        self.conv1 = StyleConv(
+            in_channels=out_channels,
+            out_channels=out_channels,
+            style_dim=style_dim,
+            resolution=2**res,
+            kernel_size=3,
+            use_noise=use_noise,
+            activation=activation,
+            demodulate=demodulate,
+        )
+        self.toRGB = ToRGB(
+            in_channels=out_channels,
+            out_channels=img_channels,
+            style_dim=style_dim,
+            kernel_size=1,
+            demodulate=False,
+        )
+
+    def forward(self, x, img, style, skip, noise_mode="random"):
+        x = self.conv0(x, style, noise_mode=noise_mode)
+        x = x + skip
+        x = self.conv1(x, style, noise_mode=noise_mode)
+        img = self.toRGB(x, style, skip=img)
+
+        return x, img
+
+
+class FirstStage(nn.Module):
+    def __init__(
+        self,
+        img_channels,
+        img_resolution=256,
+        dim=180,
+        w_dim=512,
+        use_noise=False,
+        demodulate=True,
+        activation="lrelu",
+    ):
+        super().__init__()
+        res = 64
+
+        self.conv_first = Conv2dLayerPartial(
+            in_channels=img_channels + 1,
+            out_channels=dim,
+            kernel_size=3,
+            activation=activation,
+        )
+        self.enc_conv = nn.ModuleList()
+        down_time = int(np.log2(img_resolution // res))
+        # 根据图片尺寸构建 swim transformer 的层数
+        for i in range(down_time):  # from input size to 64
+            self.enc_conv.append(
+                Conv2dLayerPartial(
+                    in_channels=dim,
+                    out_channels=dim,
+                    kernel_size=3,
+                    down=2,
+                    activation=activation,
+                )
+            )
+
+        # from 64 -> 16 -> 64
+        depths = [2, 3, 4, 3, 2]
+        ratios = [1, 1 / 2, 1 / 2, 2, 2]
+        num_heads = 6
+        window_sizes = [8, 16, 16, 16, 8]
+        drop_path_rate = 0.1
+        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
+
+        self.tran = nn.ModuleList()
+        for i, depth in enumerate(depths):
+            res = int(res * ratios[i])
+            if ratios[i] < 1:
+                merge = PatchMerging(dim, dim, down=int(1 / ratios[i]))
+            elif ratios[i] > 1:
+                merge = PatchUpsampling(dim, dim, up=ratios[i])
+            else:
+                merge = None
+            self.tran.append(
+                BasicLayer(
+                    dim=dim,
+                    input_resolution=[res, res],
+                    depth=depth,
+                    num_heads=num_heads,
+                    window_size=window_sizes[i],
+                    drop_path=dpr[sum(depths[:i]) : sum(depths[: i + 1])],
+                    downsample=merge,
+                )
+            )
+
+        # global style
+        down_conv = []
+        for i in range(int(np.log2(16))):
+            down_conv.append(
+                Conv2dLayer(
+                    in_channels=dim,
+                    out_channels=dim,
+                    kernel_size=3,
+                    down=2,
+                    activation=activation,
+                )
+            )
+        down_conv.append(nn.AdaptiveAvgPool2d((1, 1)))
+        self.down_conv = nn.Sequential(*down_conv)
+        self.to_style = FullyConnectedLayer(
+            in_features=dim, out_features=dim * 2, activation=activation
+        )
+        self.ws_style = FullyConnectedLayer(
+            in_features=w_dim, out_features=dim, activation=activation
+        )
+        self.to_square = FullyConnectedLayer(
+            in_features=dim, out_features=16 * 16, activation=activation
+        )
+
+        style_dim = dim * 3
+        self.dec_conv = nn.ModuleList()
+        for i in range(down_time):  # from 64 to input size
+            res = res * 2
+            self.dec_conv.append(
+                DecStyleBlock(
+                    res,
+                    dim,
+                    dim,
+                    activation,
+                    style_dim,
+                    use_noise,
+                    demodulate,
+                    img_channels,
+                )
+            )
+
+    def forward(self, images_in, masks_in, ws, noise_mode="random"):
+        x = torch.cat([masks_in - 0.5, images_in * masks_in], dim=1)
+
+        skips = []
+        x, mask = self.conv_first(x, masks_in)  # input size
+        skips.append(x)
+        for i, block in enumerate(self.enc_conv):  # input size to 64
+            x, mask = block(x, mask)
+            if i != len(self.enc_conv) - 1:
+                skips.append(x)
+
+        x_size = x.size()[-2:]
+        x = feature2token(x)
+        mask = feature2token(mask)
+        mid = len(self.tran) // 2
+        for i, block in enumerate(self.tran):  # 64 to 16
+            if i < mid:
+                x, x_size, mask = block(x, x_size, mask)
+                skips.append(x)
+            elif i > mid:
+                x, x_size, mask = block(x, x_size, None)
+                x = x + skips[mid - i]
+            else:
+                x, x_size, mask = block(x, x_size, None)
+
+                mul_map = torch.ones_like(x) * 0.5
+                mul_map = F.dropout(mul_map, training=True)
+                ws = self.ws_style(ws[:, -1])
+                add_n = self.to_square(ws).unsqueeze(1)
+                add_n = (
+                    F.interpolate(
+                        add_n, size=x.size(1), mode="linear", align_corners=False
+                    )
+                    .squeeze(1)
+                    .unsqueeze(-1)
+                )
+                x = x * mul_map + add_n * (1 - mul_map)
+                gs = self.to_style(
+                    self.down_conv(token2feature(x, x_size)).flatten(start_dim=1)
+                )
+                style = torch.cat([gs, ws], dim=1)
+
+        x = token2feature(x, x_size).contiguous()
+        img = None
+        for i, block in enumerate(self.dec_conv):
+            x, img = block(
+                x, img, style, skips[len(self.dec_conv) - i - 1], noise_mode=noise_mode
+            )
+
+        # ensemble
+        img = img * (1 - masks_in) + images_in * masks_in
+
+        return img
+
+
+class SynthesisNet(nn.Module):
+    def __init__(
+        self,
+        w_dim,  # Intermediate latent (W) dimensionality.
+        img_resolution,  # Output image resolution.
+        img_channels=3,  # Number of color channels.
+        channel_base=32768,  # Overall multiplier for the number of channels.
+        channel_decay=1.0,
+        channel_max=512,  # Maximum number of channels in any layer.
+        activation="lrelu",  # Activation function: 'relu', 'lrelu', etc.
+        drop_rate=0.5,
+        use_noise=False,
+        demodulate=True,
+    ):
+        super().__init__()
+        resolution_log2 = int(np.log2(img_resolution))
+        assert img_resolution == 2**resolution_log2 and img_resolution >= 4
+
+        self.num_layers = resolution_log2 * 2 - 3 * 2
+        self.img_resolution = img_resolution
+        self.resolution_log2 = resolution_log2
+
+        # first stage
+        self.first_stage = FirstStage(
+            img_channels,
+            img_resolution=img_resolution,
+            w_dim=w_dim,
+            use_noise=False,
+            demodulate=demodulate,
+        )
+
+        # second stage
+        self.enc = Encoder(
+            resolution_log2, img_channels, activation, patch_size=5, channels=16
+        )
+        self.to_square = FullyConnectedLayer(
+            in_features=w_dim, out_features=16 * 16, activation=activation
+        )
+        self.to_style = ToStyle(
+            in_channels=nf(4),
+            out_channels=nf(2) * 2,
+            activation=activation,
+            drop_rate=drop_rate,
+        )
+        style_dim = w_dim + nf(2) * 2
+        self.dec = Decoder(
+            resolution_log2, activation, style_dim, use_noise, demodulate, img_channels
+        )
+
+    def forward(self, images_in, masks_in, ws, noise_mode="random", return_stg1=False):
+        out_stg1 = self.first_stage(images_in, masks_in, ws, noise_mode=noise_mode)
+
+        # encoder
+        x = images_in * masks_in + out_stg1 * (1 - masks_in)
+        x = torch.cat([masks_in - 0.5, x, images_in * masks_in], dim=1)
+        E_features = self.enc(x)
+
+        fea_16 = E_features[4]
+        mul_map = torch.ones_like(fea_16) * 0.5
+        mul_map = F.dropout(mul_map, training=True)
+        add_n = self.to_square(ws[:, 0]).view(-1, 16, 16).unsqueeze(1)
+        add_n = F.interpolate(
+            add_n, size=fea_16.size()[-2:], mode="bilinear", align_corners=False
+        )
+        fea_16 = fea_16 * mul_map + add_n * (1 - mul_map)
+        E_features[4] = fea_16
+
+        # style
+        gs = self.to_style(fea_16)
+
+        # decoder
+        img = self.dec(fea_16, ws, gs, E_features, noise_mode=noise_mode)
+
+        # ensemble
+        img = img * (1 - masks_in) + images_in * masks_in
+
+        if not return_stg1:
+            return img
+        else:
+            return img, out_stg1
+
+
+class Generator(nn.Module):
+    def __init__(
+        self,
+        z_dim,  # Input latent (Z) dimensionality, 0 = no latent.
+        c_dim,  # Conditioning label (C) dimensionality, 0 = no label.
+        w_dim,  # Intermediate latent (W) dimensionality.
+        img_resolution,  # resolution of generated image
+        img_channels,  # Number of input color channels.
+        synthesis_kwargs={},  # Arguments for SynthesisNetwork.
+        mapping_kwargs={},  # Arguments for MappingNetwork.
+    ):
+        super().__init__()
+        self.z_dim = z_dim
+        self.c_dim = c_dim
+        self.w_dim = w_dim
+        self.img_resolution = img_resolution
+        self.img_channels = img_channels
+
+        self.synthesis = SynthesisNet(
+            w_dim=w_dim,
+            img_resolution=img_resolution,
+            img_channels=img_channels,
+            **synthesis_kwargs,
+        )
+        self.mapping = MappingNet(
+            z_dim=z_dim,
+            c_dim=c_dim,
+            w_dim=w_dim,
+            num_ws=self.synthesis.num_layers,
+            **mapping_kwargs,
+        )
+
+    def forward(
+        self,
+        images_in,
+        masks_in,
+        z,
+        c,
+        truncation_psi=1,
+        truncation_cutoff=None,
+        skip_w_avg_update=False,
+        noise_mode="none",
+        return_stg1=False,
+    ):
+        ws = self.mapping(
+            z,
+            c,
+            truncation_psi=truncation_psi,
+            truncation_cutoff=truncation_cutoff,
+            skip_w_avg_update=skip_w_avg_update,
+        )
+        img = self.synthesis(images_in, masks_in, ws, noise_mode=noise_mode)
+        return img
+
+
+class Discriminator(torch.nn.Module):
+    def __init__(
+        self,
+        c_dim,  # Conditioning label (C) dimensionality.
+        img_resolution,  # Input resolution.
+        img_channels,  # Number of input color channels.
+        channel_base=32768,  # Overall multiplier for the number of channels.
+        channel_max=512,  # Maximum number of channels in any layer.
+        channel_decay=1,
+        cmap_dim=None,  # Dimensionality of mapped conditioning label, None = default.
+        activation="lrelu",
+        mbstd_group_size=4,  # Group size for the minibatch standard deviation layer, None = entire minibatch.
+        mbstd_num_channels=1,  # Number of features for the minibatch standard deviation layer, 0 = disable.
+    ):
+        super().__init__()
+        self.c_dim = c_dim
+        self.img_resolution = img_resolution
+        self.img_channels = img_channels
+
+        resolution_log2 = int(np.log2(img_resolution))
+        assert img_resolution == 2**resolution_log2 and img_resolution >= 4
+        self.resolution_log2 = resolution_log2
+
+        if cmap_dim == None:
+            cmap_dim = nf(2)
+        if c_dim == 0:
+            cmap_dim = 0
+        self.cmap_dim = cmap_dim
+
+        if c_dim > 0:
+            self.mapping = MappingNet(
+                z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None
+            )
+
+        Dis = [DisFromRGB(img_channels + 1, nf(resolution_log2), activation)]
+        for res in range(resolution_log2, 2, -1):
+            Dis.append(DisBlock(nf(res), nf(res - 1), activation))
+
+        if mbstd_num_channels > 0:
+            Dis.append(
+                MinibatchStdLayer(
+                    group_size=mbstd_group_size, num_channels=mbstd_num_channels
+                )
+            )
+        Dis.append(
+            Conv2dLayer(
+                nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation
+            )
+        )
+        self.Dis = nn.Sequential(*Dis)
+
+        self.fc0 = FullyConnectedLayer(nf(2) * 4**2, nf(2), activation=activation)
+        self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim)
+
+        # for 64x64
+        Dis_stg1 = [DisFromRGB(img_channels + 1, nf(resolution_log2) // 2, activation)]
+        for res in range(resolution_log2, 2, -1):
+            Dis_stg1.append(DisBlock(nf(res) // 2, nf(res - 1) // 2, activation))
+
+        if mbstd_num_channels > 0:
+            Dis_stg1.append(
+                MinibatchStdLayer(
+                    group_size=mbstd_group_size, num_channels=mbstd_num_channels
+                )
+            )
+        Dis_stg1.append(
+            Conv2dLayer(
+                nf(2) // 2 + mbstd_num_channels,
+                nf(2) // 2,
+                kernel_size=3,
+                activation=activation,
+            )
+        )
+        self.Dis_stg1 = nn.Sequential(*Dis_stg1)
+
+        self.fc0_stg1 = FullyConnectedLayer(
+            nf(2) // 2 * 4**2, nf(2) // 2, activation=activation
+        )
+        self.fc1_stg1 = FullyConnectedLayer(
+            nf(2) // 2, 1 if cmap_dim == 0 else cmap_dim
+        )
+
+    def forward(self, images_in, masks_in, images_stg1, c):
+        x = self.Dis(torch.cat([masks_in - 0.5, images_in], dim=1))
+        x = self.fc1(self.fc0(x.flatten(start_dim=1)))
+
+        x_stg1 = self.Dis_stg1(torch.cat([masks_in - 0.5, images_stg1], dim=1))
+        x_stg1 = self.fc1_stg1(self.fc0_stg1(x_stg1.flatten(start_dim=1)))
+
+        if self.c_dim > 0:
+            cmap = self.mapping(None, c)
+
+        if self.cmap_dim > 0:
+            x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
+            x_stg1 = (x_stg1 * cmap).sum(dim=1, keepdim=True) * (
+                1 / np.sqrt(self.cmap_dim)
+            )
+
+        return x, x_stg1
+
+
+MAT_MODEL_URL = os.environ.get(
+    "MAT_MODEL_URL",
+    "https://github.com/Sanster/models/releases/download/add_mat/Places_512_FullData_G.pth",
+)
+
+MAT_MODEL_MD5 = os.environ.get("MAT_MODEL_MD5", "8ca927835fa3f5e21d65ffcb165377ed")
+
+
+class MAT(InpaintModel):
+    name = "mat"
+    min_size = 512
+    pad_mod = 512
+    pad_to_square = True
+    is_erase_model = True
+
+    def init_model(self, device, **kwargs):
+        seed = 240  # pick up a random number
+        set_seed(seed)
+
+        fp16 = not kwargs.get("no_half", False)
+        use_gpu = "cuda" in str(device) and torch.cuda.is_available()
+        self.torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
+
+        G = Generator(
+            z_dim=512,
+            c_dim=0,
+            w_dim=512,
+            img_resolution=512,
+            img_channels=3,
+            mapping_kwargs={"torch_dtype": self.torch_dtype},
+        ).to(self.torch_dtype)
+        # fmt: off
+        self.model = load_model(G, MAT_MODEL_URL, device, MAT_MODEL_MD5)
+        self.z = torch.from_numpy(np.random.randn(1, G.z_dim)).to(self.torch_dtype).to(device)
+        self.label = torch.zeros([1, self.model.c_dim], device=device).to(self.torch_dtype)
+        # fmt: on
+
+    @staticmethod
+    def download():
+        download_model(MAT_MODEL_URL, MAT_MODEL_MD5)
+
+    @staticmethod
+    def is_downloaded() -> bool:
+        return os.path.exists(get_cache_path_by_url(MAT_MODEL_URL))
+
+    def forward(self, image, mask, config: InpaintRequest):
+        """Input images and output images have same size
+        images: [H, W, C] RGB
+        masks: [H, W] mask area == 255
+        return: BGR IMAGE
+        """
+
+        image = norm_img(image)  # [0, 1]
+        image = image * 2 - 1  # [0, 1] -> [-1, 1]
+
+        mask = (mask > 127) * 255
+        mask = 255 - mask
+        mask = norm_img(mask)
+
+        image = (
+            torch.from_numpy(image).unsqueeze(0).to(self.torch_dtype).to(self.device)
+        )
+        mask = torch.from_numpy(mask).unsqueeze(0).to(self.torch_dtype).to(self.device)
+
+        output = self.model(
+            image, mask, self.z, self.label, truncation_psi=1, noise_mode="none"
+        )
+        output = (
+            (output.permute(0, 2, 3, 1) * 127.5 + 127.5)
+            .round()
+            .clamp(0, 255)
+            .to(torch.uint8)
+        )
+        output = output[0].cpu().numpy()
+        cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
+        return cur_res
diff --git a/iopaint/model/mi_gan.py b/iopaint/model/mi_gan.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1ce25ff145d793f3f96dee2a58593ddd6cb34b5
--- /dev/null
+++ b/iopaint/model/mi_gan.py
@@ -0,0 +1,110 @@
+import os
+
+import cv2
+import torch
+
+from iopaint.helper import (
+    load_jit_model,
+    download_model,
+    get_cache_path_by_url,
+    boxes_from_mask,
+    resize_max_size,
+    norm_img,
+)
+from .base import InpaintModel
+from iopaint.schema import InpaintRequest
+
+MIGAN_MODEL_URL = os.environ.get(
+    "MIGAN_MODEL_URL",
+    "https://github.com/Sanster/models/releases/download/migan/migan_traced.pt",
+)
+MIGAN_MODEL_MD5 = os.environ.get("MIGAN_MODEL_MD5", "76eb3b1a71c400ee3290524f7a11b89c")
+
+
+class MIGAN(InpaintModel):
+    name = "migan"
+    min_size = 512
+    pad_mod = 512
+    pad_to_square = True
+    is_erase_model = True
+
+    def init_model(self, device, **kwargs):
+        self.model = load_jit_model(MIGAN_MODEL_URL, device, MIGAN_MODEL_MD5).eval()
+
+    @staticmethod
+    def download():
+        download_model(MIGAN_MODEL_URL, MIGAN_MODEL_MD5)
+
+    @staticmethod
+    def is_downloaded() -> bool:
+        return os.path.exists(get_cache_path_by_url(MIGAN_MODEL_URL))
+
+    @torch.no_grad()
+    def __call__(self, image, mask, config: InpaintRequest):
+        """
+        images: [H, W, C] RGB, not normalized
+        masks: [H, W]
+        return: BGR IMAGE
+        """
+        if image.shape[0] == 512 and image.shape[1] == 512:
+            return self._pad_forward(image, mask, config)
+
+        boxes = boxes_from_mask(mask)
+        crop_result = []
+        config.hd_strategy_crop_margin = 128
+        for box in boxes:
+            crop_image, crop_mask, crop_box = self._crop_box(image, mask, box, config)
+            origin_size = crop_image.shape[:2]
+            resize_image = resize_max_size(crop_image, size_limit=512)
+            resize_mask = resize_max_size(crop_mask, size_limit=512)
+            inpaint_result = self._pad_forward(resize_image, resize_mask, config)
+
+            # only paste masked area result
+            inpaint_result = cv2.resize(
+                inpaint_result,
+                (origin_size[1], origin_size[0]),
+                interpolation=cv2.INTER_CUBIC,
+            )
+
+            original_pixel_indices = crop_mask < 127
+            inpaint_result[original_pixel_indices] = crop_image[:, :, ::-1][
+                original_pixel_indices
+            ]
+
+            crop_result.append((inpaint_result, crop_box))
+
+        inpaint_result = image[:, :, ::-1].copy()
+        for crop_image, crop_box in crop_result:
+            x1, y1, x2, y2 = crop_box
+            inpaint_result[y1:y2, x1:x2, :] = crop_image
+
+        return inpaint_result
+
+    def forward(self, image, mask, config: InpaintRequest):
+        """Input images and output images have same size
+        images: [H, W, C] RGB
+        masks: [H, W] mask area == 255
+        return: BGR IMAGE
+        """
+
+        image = norm_img(image)  # [0, 1]
+        image = image * 2 - 1  # [0, 1] -> [-1, 1]
+        mask = (mask > 120) * 255
+        mask = norm_img(mask)
+
+        image = torch.from_numpy(image).unsqueeze(0).to(self.device)
+        mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
+
+        erased_img = image * (1 - mask)
+        input_image = torch.cat([0.5 - mask, erased_img], dim=1)
+
+        output = self.model(input_image)
+        output = (
+            (output.permute(0, 2, 3, 1) * 127.5 + 127.5)
+            .round()
+            .clamp(0, 255)
+            .to(torch.uint8)
+        )
+        output = output[0].cpu().numpy()
+        cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
+        return cur_res
diff --git a/iopaint/model/opencv2.py b/iopaint/model/opencv2.py
new file mode 100644
index 0000000000000000000000000000000000000000..de472094417b3eba910611d34327612aad9ff5cb
--- /dev/null
+++ b/iopaint/model/opencv2.py
@@ -0,0 +1,29 @@
+import cv2
+from .base import InpaintModel
+from iopaint.schema import InpaintRequest
+
+flag_map = {"INPAINT_NS": cv2.INPAINT_NS, "INPAINT_TELEA": cv2.INPAINT_TELEA}
+
+
+class OpenCV2(InpaintModel):
+    name = "cv2"
+    pad_mod = 1
+    is_erase_model = True
+
+    @staticmethod
+    def is_downloaded() -> bool:
+        return True
+
+    def forward(self, image, mask, config: InpaintRequest):
+        """Input image and output image have same size
+        image: [H, W, C] RGB
+        mask: [H, W, 1]
+        return: BGR IMAGE
+        """
+        cur_res = cv2.inpaint(
+            image[:, :, ::-1],
+            mask,
+            inpaintRadius=config.cv2_radius,
+            flags=flag_map[config.cv2_flag],
+        )
+        return cur_res
diff --git a/iopaint/model_manager.py b/iopaint/model_manager.py
new file mode 100644
index 0000000000000000000000000000000000000000..de13612acfdfdcc823b2eeeb7eb99b4589f31333
--- /dev/null
+++ b/iopaint/model_manager.py
@@ -0,0 +1,191 @@
+from typing import List, Dict
+
+import torch
+from loguru import logger
+import numpy as np
+
+from iopaint.download import scan_models
+from iopaint.helper import switch_mps_device
+from iopaint.model import models, ControlNet, SD, SDXL
+from iopaint.model.utils import torch_gc, is_local_files_only
+from iopaint.schema import InpaintRequest, ModelInfo, ModelType
+
+
+class ModelManager:
+    def __init__(self, name: str, device: torch.device, **kwargs):
+        self.name = name
+        self.device = device
+        self.kwargs = kwargs
+        self.available_models: Dict[str, ModelInfo] = {}
+        self.scan_models()
+
+        self.enable_controlnet = kwargs.get("enable_controlnet", False)
+        controlnet_method = kwargs.get("controlnet_method", None)
+        if (
+            controlnet_method is None
+            and name in self.available_models
+            and self.available_models[name].support_controlnet
+        ):
+            controlnet_method = self.available_models[name].controlnets[0]
+        self.controlnet_method = controlnet_method
+        self.model = self.init_model(name, device, **kwargs)
+
+    @property
+    def current_model(self) -> ModelInfo:
+        return self.available_models[self.name]
+
+    def init_model(self, name: str, device, **kwargs):
+        logger.info(f"Loading model: {name}")
+        if name not in self.available_models:
+            raise NotImplementedError(
+                f"Unsupported model: {name}. Available models: {list(self.available_models.keys())}"
+            )
+
+        model_info = self.available_models[name]
+        kwargs = {
+            **kwargs,
+            "model_info": model_info,
+            "enable_controlnet": self.enable_controlnet,
+            "controlnet_method": self.controlnet_method,
+        }
+
+        if model_info.support_controlnet and self.enable_controlnet:
+            return ControlNet(device, **kwargs)
+        elif model_info.name in models:
+            return models[name](device, **kwargs)
+        else:
+            if model_info.model_type in [
+                ModelType.DIFFUSERS_SD_INPAINT,
+                ModelType.DIFFUSERS_SD,
+            ]:
+                return SD(device, **kwargs)
+
+            if model_info.model_type in [
+                ModelType.DIFFUSERS_SDXL_INPAINT,
+                ModelType.DIFFUSERS_SDXL,
+            ]:
+                return SDXL(device, **kwargs)
+
+        raise NotImplementedError(f"Unsupported model: {name}")
+
+    @torch.inference_mode()
+    def __call__(self, image, mask, config: InpaintRequest):
+        """
+
+        Args:
+            image: [H, W, C] RGB
+            mask: [H, W, 1] 255 means area to repaint
+            config:
+
+        Returns:
+            BGR image
+        """
+        self.switch_controlnet_method(config)
+        self.enable_disable_freeu(config)
+        self.enable_disable_lcm_lora(config)
+        return self.model(image, mask, config).astype(np.uint8)
+
+    def scan_models(self) -> List[ModelInfo]:
+        available_models = scan_models()
+        self.available_models = {it.name: it for it in available_models}
+        return available_models
+
+    def switch(self, new_name: str):
+        if new_name == self.name:
+            return
+
+        old_name = self.name
+        old_controlnet_method = self.controlnet_method
+        self.name = new_name
+
+        if (
+            self.available_models[new_name].support_controlnet
+            and self.controlnet_method
+            not in self.available_models[new_name].controlnets
+        ):
+            self.controlnet_method = self.available_models[new_name].controlnets[0]
+        try:
+            # TODO: enable/disable controlnet without reload model
+            del self.model
+            torch_gc()
+
+            self.model = self.init_model(
+                new_name, switch_mps_device(new_name, self.device), **self.kwargs
+            )
+        except Exception as e:
+            self.name = old_name
+            self.controlnet_method = old_controlnet_method
+            logger.info(f"Switch model from {old_name} to {new_name} failed, rollback")
+            self.model = self.init_model(
+                old_name, switch_mps_device(old_name, self.device), **self.kwargs
+            )
+            raise e
+
+    def switch_controlnet_method(self, config):
+        if not self.available_models[self.name].support_controlnet:
+            return
+
+        if (
+            self.enable_controlnet
+            and config.controlnet_method
+            and self.controlnet_method != config.controlnet_method
+        ):
+            old_controlnet_method = self.controlnet_method
+            self.controlnet_method = config.controlnet_method
+            self.model.switch_controlnet_method(config.controlnet_method)
+            logger.info(
+                f"Switch Controlnet method from {old_controlnet_method} to {config.controlnet_method}"
+            )
+        elif self.enable_controlnet != config.enable_controlnet:
+            self.enable_controlnet = config.enable_controlnet
+            self.controlnet_method = config.controlnet_method
+
+            pipe_components = {
+                "vae": self.model.model.vae,
+                "text_encoder": self.model.model.text_encoder,
+                "unet": self.model.model.unet,
+            }
+            if hasattr(self.model.model, "text_encoder_2"):
+                pipe_components["text_encoder_2"] = self.model.model.text_encoder_2
+
+            self.model = self.init_model(
+                self.name,
+                switch_mps_device(self.name, self.device),
+                pipe_components=pipe_components,
+                **self.kwargs,
+            )
+            if not config.enable_controlnet:
+                logger.info(f"Disable controlnet")
+            else:
+                logger.info(f"Enable controlnet: {config.controlnet_method}")
+
+    def enable_disable_freeu(self, config: InpaintRequest):
+        if str(self.model.device) == "mps":
+            return
+
+        if self.available_models[self.name].support_freeu:
+            if config.sd_freeu:
+                freeu_config = config.sd_freeu_config
+                self.model.model.enable_freeu(
+                    s1=freeu_config.s1,
+                    s2=freeu_config.s2,
+                    b1=freeu_config.b1,
+                    b2=freeu_config.b2,
+                )
+            else:
+                self.model.model.disable_freeu()
+
+    def enable_disable_lcm_lora(self, config: InpaintRequest):
+        if self.available_models[self.name].support_lcm_lora:
+            # TODO: change this if load other lora is supported
+            lcm_lora_loaded = bool(self.model.model.get_list_adapters())
+            if config.sd_lcm_lora:
+                if not lcm_lora_loaded:
+                    self.model.model.load_lora_weights(
+                        self.model.lcm_lora_id,
+                        weight_name="pytorch_lora_weights.safetensors",
+                        local_files_only=is_local_files_only(),
+                    )
+            else:
+                if lcm_lora_loaded:
+                    self.model.model.disable_lora()
diff --git a/iopaint/plugins/briarmbg.py b/iopaint/plugins/briarmbg.py
new file mode 100644
index 0000000000000000000000000000000000000000..880f5305695613058c3f2b69c2a0c6dcda3af3ac
--- /dev/null
+++ b/iopaint/plugins/briarmbg.py
@@ -0,0 +1,512 @@
+# copy from: https://huggingface.co/spaces/briaai/BRIA-RMBG-1.4/blob/main/briarmbg.py
+import cv2
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from PIL import Image
+import numpy as np
+from torchvision.transforms.functional import normalize
+
+
+class REBNCONV(nn.Module):
+    def __init__(self, in_ch=3, out_ch=3, dirate=1, stride=1):
+        super(REBNCONV, self).__init__()
+
+        self.conv_s1 = nn.Conv2d(
+            in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate, stride=stride
+        )
+        self.bn_s1 = nn.BatchNorm2d(out_ch)
+        self.relu_s1 = nn.ReLU(inplace=True)
+
+    def forward(self, x):
+        hx = x
+        xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
+
+        return xout
+
+
+## upsample tensor 'src' to have the same spatial size with tensor 'tar'
+def _upsample_like(src, tar):
+    src = F.interpolate(src, size=tar.shape[2:], mode="bilinear")
+
+    return src
+
+
+### RSU-7 ###
+class RSU7(nn.Module):
+    def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
+        super(RSU7, self).__init__()
+
+        self.in_ch = in_ch
+        self.mid_ch = mid_ch
+        self.out_ch = out_ch
+
+        self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)  ## 1 -> 1/2
+
+        self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
+        self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
+        self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
+        self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
+        self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
+        self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
+
+        self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
+
+        self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
+
+    def forward(self, x):
+        b, c, h, w = x.shape
+
+        hx = x
+        hxin = self.rebnconvin(hx)
+
+        hx1 = self.rebnconv1(hxin)
+        hx = self.pool1(hx1)
+
+        hx2 = self.rebnconv2(hx)
+        hx = self.pool2(hx2)
+
+        hx3 = self.rebnconv3(hx)
+        hx = self.pool3(hx3)
+
+        hx4 = self.rebnconv4(hx)
+        hx = self.pool4(hx4)
+
+        hx5 = self.rebnconv5(hx)
+        hx = self.pool5(hx5)
+
+        hx6 = self.rebnconv6(hx)
+
+        hx7 = self.rebnconv7(hx6)
+
+        hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1))
+        hx6dup = _upsample_like(hx6d, hx5)
+
+        hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1))
+        hx5dup = _upsample_like(hx5d, hx4)
+
+        hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
+        hx4dup = _upsample_like(hx4d, hx3)
+
+        hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
+        hx3dup = _upsample_like(hx3d, hx2)
+
+        hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
+        hx2dup = _upsample_like(hx2d, hx1)
+
+        hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
+
+        return hx1d + hxin
+
+
+### RSU-6 ###
+class RSU6(nn.Module):
+    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
+        super(RSU6, self).__init__()
+
+        self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
+
+        self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
+        self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
+        self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
+        self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
+        self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
+
+        self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
+
+        self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
+
+    def forward(self, x):
+        hx = x
+
+        hxin = self.rebnconvin(hx)
+
+        hx1 = self.rebnconv1(hxin)
+        hx = self.pool1(hx1)
+
+        hx2 = self.rebnconv2(hx)
+        hx = self.pool2(hx2)
+
+        hx3 = self.rebnconv3(hx)
+        hx = self.pool3(hx3)
+
+        hx4 = self.rebnconv4(hx)
+        hx = self.pool4(hx4)
+
+        hx5 = self.rebnconv5(hx)
+
+        hx6 = self.rebnconv6(hx5)
+
+        hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1))
+        hx5dup = _upsample_like(hx5d, hx4)
+
+        hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
+        hx4dup = _upsample_like(hx4d, hx3)
+
+        hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
+        hx3dup = _upsample_like(hx3d, hx2)
+
+        hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
+        hx2dup = _upsample_like(hx2d, hx1)
+
+        hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
+
+        return hx1d + hxin
+
+
+### RSU-5 ###
+class RSU5(nn.Module):
+    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
+        super(RSU5, self).__init__()
+
+        self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
+
+        self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
+        self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
+        self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
+        self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
+
+        self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
+
+        self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
+
+    def forward(self, x):
+        hx = x
+
+        hxin = self.rebnconvin(hx)
+
+        hx1 = self.rebnconv1(hxin)
+        hx = self.pool1(hx1)
+
+        hx2 = self.rebnconv2(hx)
+        hx = self.pool2(hx2)
+
+        hx3 = self.rebnconv3(hx)
+        hx = self.pool3(hx3)
+
+        hx4 = self.rebnconv4(hx)
+
+        hx5 = self.rebnconv5(hx4)
+
+        hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1))
+        hx4dup = _upsample_like(hx4d, hx3)
+
+        hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
+        hx3dup = _upsample_like(hx3d, hx2)
+
+        hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
+        hx2dup = _upsample_like(hx2d, hx1)
+
+        hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
+
+        return hx1d + hxin
+
+
+### RSU-4 ###
+class RSU4(nn.Module):
+    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
+        super(RSU4, self).__init__()
+
+        self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
+
+        self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
+        self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
+        self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
+
+        self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
+
+        self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
+        self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
+
+    def forward(self, x):
+        hx = x
+
+        hxin = self.rebnconvin(hx)
+
+        hx1 = self.rebnconv1(hxin)
+        hx = self.pool1(hx1)
+
+        hx2 = self.rebnconv2(hx)
+        hx = self.pool2(hx2)
+
+        hx3 = self.rebnconv3(hx)
+
+        hx4 = self.rebnconv4(hx3)
+
+        hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
+        hx3dup = _upsample_like(hx3d, hx2)
+
+        hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
+        hx2dup = _upsample_like(hx2d, hx1)
+
+        hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
+
+        return hx1d + hxin
+
+
+### RSU-4F ###
+class RSU4F(nn.Module):
+    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
+        super(RSU4F, self).__init__()
+
+        self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
+
+        self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
+        self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
+        self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
+
+        self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
+
+        self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4)
+        self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2)
+        self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
+
+    def forward(self, x):
+        hx = x
+
+        hxin = self.rebnconvin(hx)
+
+        hx1 = self.rebnconv1(hxin)
+        hx2 = self.rebnconv2(hx1)
+        hx3 = self.rebnconv3(hx2)
+
+        hx4 = self.rebnconv4(hx3)
+
+        hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
+        hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1))
+        hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1))
+
+        return hx1d + hxin
+
+
+class myrebnconv(nn.Module):
+    def __init__(
+        self,
+        in_ch=3,
+        out_ch=1,
+        kernel_size=3,
+        stride=1,
+        padding=1,
+        dilation=1,
+        groups=1,
+    ):
+        super(myrebnconv, self).__init__()
+
+        self.conv = nn.Conv2d(
+            in_ch,
+            out_ch,
+            kernel_size=kernel_size,
+            stride=stride,
+            padding=padding,
+            dilation=dilation,
+            groups=groups,
+        )
+        self.bn = nn.BatchNorm2d(out_ch)
+        self.rl = nn.ReLU(inplace=True)
+
+    def forward(self, x):
+        return self.rl(self.bn(self.conv(x)))
+
+
+class BriaRMBG(nn.Module):
+    def __init__(self, in_ch=3, out_ch=1):
+        super(BriaRMBG, self).__init__()
+
+        self.conv_in = nn.Conv2d(in_ch, 64, 3, stride=2, padding=1)
+        self.pool_in = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.stage1 = RSU7(64, 32, 64)
+        self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.stage2 = RSU6(64, 32, 128)
+        self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.stage3 = RSU5(128, 64, 256)
+        self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.stage4 = RSU4(256, 128, 512)
+        self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.stage5 = RSU4F(512, 256, 512)
+        self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
+
+        self.stage6 = RSU4F(512, 256, 512)
+
+        # decoder
+        self.stage5d = RSU4F(1024, 256, 512)
+        self.stage4d = RSU4(1024, 128, 256)
+        self.stage3d = RSU5(512, 64, 128)
+        self.stage2d = RSU6(256, 32, 64)
+        self.stage1d = RSU7(128, 16, 64)
+
+        self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
+        self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
+        self.side3 = nn.Conv2d(128, out_ch, 3, padding=1)
+        self.side4 = nn.Conv2d(256, out_ch, 3, padding=1)
+        self.side5 = nn.Conv2d(512, out_ch, 3, padding=1)
+        self.side6 = nn.Conv2d(512, out_ch, 3, padding=1)
+
+        # self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
+
+    def forward(self, x):
+        hx = x
+
+        hxin = self.conv_in(hx)
+        # hx = self.pool_in(hxin)
+
+        # stage 1
+        hx1 = self.stage1(hxin)
+        hx = self.pool12(hx1)
+
+        # stage 2
+        hx2 = self.stage2(hx)
+        hx = self.pool23(hx2)
+
+        # stage 3
+        hx3 = self.stage3(hx)
+        hx = self.pool34(hx3)
+
+        # stage 4
+        hx4 = self.stage4(hx)
+        hx = self.pool45(hx4)
+
+        # stage 5
+        hx5 = self.stage5(hx)
+        hx = self.pool56(hx5)
+
+        # stage 6
+        hx6 = self.stage6(hx)
+        hx6up = _upsample_like(hx6, hx5)
+
+        # -------------------- decoder --------------------
+        hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
+        hx5dup = _upsample_like(hx5d, hx4)
+
+        hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
+        hx4dup = _upsample_like(hx4d, hx3)
+
+        hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
+        hx3dup = _upsample_like(hx3d, hx2)
+
+        hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
+        hx2dup = _upsample_like(hx2d, hx1)
+
+        hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
+
+        # side output
+        d1 = self.side1(hx1d)
+        d1 = _upsample_like(d1, x)
+
+        d2 = self.side2(hx2d)
+        d2 = _upsample_like(d2, x)
+
+        d3 = self.side3(hx3d)
+        d3 = _upsample_like(d3, x)
+
+        d4 = self.side4(hx4d)
+        d4 = _upsample_like(d4, x)
+
+        d5 = self.side5(hx5d)
+        d5 = _upsample_like(d5, x)
+
+        d6 = self.side6(hx6)
+        d6 = _upsample_like(d6, x)
+
+        return [
+            F.sigmoid(d1),
+            F.sigmoid(d2),
+            F.sigmoid(d3),
+            F.sigmoid(d4),
+            F.sigmoid(d5),
+            F.sigmoid(d6),
+        ], [hx1d, hx2d, hx3d, hx4d, hx5d, hx6]
+
+
+def resize_image(image):
+    image = image.convert("RGB")
+    model_input_size = (1024, 1024)
+    image = image.resize(model_input_size, Image.BILINEAR)
+    return image
+
+
+def create_briarmbg_session():
+    from huggingface_hub import hf_hub_download
+
+    net = BriaRMBG()
+    model_path = hf_hub_download("briaai/RMBG-1.4", "model.pth")
+    net.load_state_dict(torch.load(model_path, map_location="cpu"))
+    net.eval()
+    return net
+
+
+def briarmbg_process(bgr_np_image, session, only_mask=False):
+    # prepare input
+    orig_bgr_image = Image.fromarray(bgr_np_image)
+    w, h = orig_im_size = orig_bgr_image.size
+    image = resize_image(orig_bgr_image)
+    im_np = np.array(image)
+    im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
+    im_tensor = torch.unsqueeze(im_tensor, 0)
+    im_tensor = torch.divide(im_tensor, 255.0)
+    im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
+    # inference
+    result = session(im_tensor)
+    # post process
+    result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0)
+    ma = torch.max(result)
+    mi = torch.min(result)
+    result = (result - mi) / (ma - mi)
+    # image to pil
+    im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
+
+    mask = np.squeeze(im_array)
+    if only_mask:
+        return mask
+
+    pil_im = Image.fromarray(mask)
+    # paste the mask on the original image
+    new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
+    new_im.paste(orig_bgr_image, mask=pil_im)
+    rgba_np_img = np.asarray(new_im)
+    return rgba_np_img
diff --git a/iopaint/plugins/gfpgan_plugin.py b/iopaint/plugins/gfpgan_plugin.py
new file mode 100644
index 0000000000000000000000000000000000000000..619280b0bd3f06f89d9f3d00ce10fe56bed0d47b
--- /dev/null
+++ b/iopaint/plugins/gfpgan_plugin.py
@@ -0,0 +1,74 @@
+import cv2
+import numpy as np
+from loguru import logger
+
+from iopaint.helper import download_model
+from iopaint.plugins.base_plugin import BasePlugin
+from iopaint.schema import RunPluginRequest
+
+
+class GFPGANPlugin(BasePlugin):
+    name = "GFPGAN"
+    support_gen_image = True
+
+    def __init__(self, device, upscaler=None):
+        super().__init__()
+        from .gfpganer import MyGFPGANer
+
+        url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
+        model_md5 = "94d735072630ab734561130a47bc44f8"
+        model_path = download_model(url, model_md5)
+        logger.info(f"GFPGAN model path: {model_path}")
+
+        import facexlib
+
+        if hasattr(facexlib.detection.retinaface, "device"):
+            facexlib.detection.retinaface.device = device
+
+        # Use GFPGAN for face enhancement
+        self.face_enhancer = MyGFPGANer(
+            model_path=model_path,
+            upscale=1,
+            arch="clean",
+            channel_multiplier=2,
+            device=device,
+            bg_upsampler=upscaler.model if upscaler is not None else None,
+        )
+        self.face_enhancer.face_helper.face_det.mean_tensor.to(device)
+        self.face_enhancer.face_helper.face_det = (
+            self.face_enhancer.face_helper.face_det.to(device)
+        )
+
+    def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
+        weight = 0.5
+        bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
+        logger.info(f"GFPGAN input shape: {bgr_np_img.shape}")
+        _, _, bgr_output = self.face_enhancer.enhance(
+            bgr_np_img,
+            has_aligned=False,
+            only_center_face=False,
+            paste_back=True,
+            weight=weight,
+        )
+        logger.info(f"GFPGAN output shape: {bgr_output.shape}")
+
+        # try:
+        #     if scale != 2:
+        #         interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
+        #         h, w = img.shape[0:2]
+        #         output = cv2.resize(
+        #             output,
+        #             (int(w * scale / 2), int(h * scale / 2)),
+        #             interpolation=interpolation,
+        #         )
+        # except Exception as error:
+        #     print("wrong scale input.", error)
+        return bgr_output
+
+    def check_dep(self):
+        try:
+            import gfpgan
+        except ImportError:
+            return (
+                "gfpgan is not installed, please install it first. pip install gfpgan"
+            )
diff --git a/iopaint/plugins/gfpganer.py b/iopaint/plugins/gfpganer.py
new file mode 100644
index 0000000000000000000000000000000000000000..75a575dbd182193f7a62badae139762322fb55a5
--- /dev/null
+++ b/iopaint/plugins/gfpganer.py
@@ -0,0 +1,84 @@
+import os
+
+import torch
+from facexlib.utils.face_restoration_helper import FaceRestoreHelper
+from gfpgan import GFPGANv1Clean, GFPGANer
+from torch.hub import get_dir
+
+
+class MyGFPGANer(GFPGANer):
+    """Helper for restoration with GFPGAN.
+
+    It will detect and crop faces, and then resize the faces to 512x512.
+    GFPGAN is used to restored the resized faces.
+    The background is upsampled with the bg_upsampler.
+    Finally, the faces will be pasted back to the upsample background image.
+
+    Args:
+        model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically).
+        upscale (float): The upscale of the final output. Default: 2.
+        arch (str): The GFPGAN architecture. Option: clean | original. Default: clean.
+        channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
+        bg_upsampler (nn.Module): The upsampler for the background. Default: None.
+    """
+
+    def __init__(
+        self,
+        model_path,
+        upscale=2,
+        arch="clean",
+        channel_multiplier=2,
+        bg_upsampler=None,
+        device=None,
+    ):
+        self.upscale = upscale
+        self.bg_upsampler = bg_upsampler
+
+        # initialize model
+        self.device = (
+            torch.device("cuda" if torch.cuda.is_available() else "cpu")
+            if device is None
+            else device
+        )
+        # initialize the GFP-GAN
+        if arch == "clean":
+            self.gfpgan = GFPGANv1Clean(
+                out_size=512,
+                num_style_feat=512,
+                channel_multiplier=channel_multiplier,
+                decoder_load_path=None,
+                fix_decoder=False,
+                num_mlp=8,
+                input_is_latent=True,
+                different_w=True,
+                narrow=1,
+                sft_half=True,
+            )
+        elif arch == "RestoreFormer":
+            from gfpgan.archs.restoreformer_arch import RestoreFormer
+
+            self.gfpgan = RestoreFormer()
+
+        hub_dir = get_dir()
+        model_dir = os.path.join(hub_dir, "checkpoints")
+
+        # initialize face helper
+        self.face_helper = FaceRestoreHelper(
+            upscale,
+            face_size=512,
+            crop_ratio=(1, 1),
+            det_model="retinaface_resnet50",
+            save_ext="png",
+            use_parse=True,
+            device=self.device,
+            model_rootpath=model_dir,
+        )
+
+        loadnet = torch.load(model_path)
+        if "params_ema" in loadnet:
+            keyname = "params_ema"
+        else:
+            keyname = "params"
+        self.gfpgan.load_state_dict(loadnet[keyname], strict=True)
+        self.gfpgan.eval()
+        self.gfpgan = self.gfpgan.to(self.device)
diff --git a/iopaint/plugins/interactive_seg.py b/iopaint/plugins/interactive_seg.py
new file mode 100644
index 0000000000000000000000000000000000000000..f19a3a89ac194b7929e4bd704931ade602453495
--- /dev/null
+++ b/iopaint/plugins/interactive_seg.py
@@ -0,0 +1,89 @@
+import hashlib
+from typing import List
+
+import numpy as np
+import torch
+from loguru import logger
+
+from iopaint.helper import download_model
+from iopaint.plugins.base_plugin import BasePlugin
+from iopaint.plugins.segment_anything import SamPredictor, sam_model_registry
+from iopaint.schema import RunPluginRequest
+
+# 从小到大
+SEGMENT_ANYTHING_MODELS = {
+    "vit_b": {
+        "url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
+        "md5": "01ec64d29a2fca3f0661936605ae66f8",
+    },
+    "vit_l": {
+        "url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
+        "md5": "0b3195507c641ddb6910d2bb5adee89c",
+    },
+    "vit_h": {
+        "url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
+        "md5": "4b8939a88964f0f4ff5f5b2642c598a6",
+    },
+    "mobile_sam": {
+        "url": "https://github.com/Sanster/models/releases/download/MobileSAM/mobile_sam.pt",
+        "md5": "f3c0d8cda613564d499310dab6c812cd",
+    },
+}
+
+
+class InteractiveSeg(BasePlugin):
+    name = "InteractiveSeg"
+    support_gen_mask = True
+
+    def __init__(self, model_name, device):
+        super().__init__()
+        self.model_name = model_name
+        self.device = device
+        self._init_session(model_name)
+
+    def _init_session(self, model_name: str):
+        model_path = download_model(
+            SEGMENT_ANYTHING_MODELS[model_name]["url"],
+            SEGMENT_ANYTHING_MODELS[model_name]["md5"],
+        )
+        logger.info(f"SegmentAnything model path: {model_path}")
+        self.predictor = SamPredictor(
+            sam_model_registry[model_name](checkpoint=model_path).to(self.device)
+        )
+        self.prev_img_md5 = None
+
+    def switch_model(self, new_model_name):
+        if self.model_name == new_model_name:
+            return
+
+        logger.info(
+            f"Switching InteractiveSeg model from {self.model_name} to {new_model_name}"
+        )
+        self._init_session(new_model_name)
+        self.model_name = new_model_name
+
+    def gen_mask(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
+        img_md5 = hashlib.md5(req.image.encode("utf-8")).hexdigest()
+        return self.forward(rgb_np_img, req.clicks, img_md5)
+
+    @torch.inference_mode()
+    def forward(self, rgb_np_img, clicks: List[List], img_md5: str):
+        input_point = []
+        input_label = []
+        for click in clicks:
+            x = click[0]
+            y = click[1]
+            input_point.append([x, y])
+            input_label.append(click[2])
+
+        if img_md5 and img_md5 != self.prev_img_md5:
+            self.prev_img_md5 = img_md5
+            self.predictor.set_image(rgb_np_img)
+
+        masks, scores, _ = self.predictor.predict(
+            point_coords=np.array(input_point),
+            point_labels=np.array(input_label),
+            multimask_output=False,
+        )
+        mask = masks[0].astype(np.uint8) * 255
+        return mask
diff --git a/iopaint/plugins/segment_anything/build_sam.py b/iopaint/plugins/segment_anything/build_sam.py
new file mode 100644
index 0000000000000000000000000000000000000000..f8dea8e0baf5c66240a6c4c277a90e6b1f44f6e7
--- /dev/null
+++ b/iopaint/plugins/segment_anything/build_sam.py
@@ -0,0 +1,168 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+
+from functools import partial
+
+from iopaint.plugins.segment_anything.modeling.tiny_vit_sam import TinyViT
+
+from .modeling import (
+    ImageEncoderViT,
+    MaskDecoder,
+    PromptEncoder,
+    Sam,
+    TwoWayTransformer,
+)
+
+
+def build_sam_vit_h(checkpoint=None):
+    return _build_sam(
+        encoder_embed_dim=1280,
+        encoder_depth=32,
+        encoder_num_heads=16,
+        encoder_global_attn_indexes=[7, 15, 23, 31],
+        checkpoint=checkpoint,
+    )
+
+
+build_sam = build_sam_vit_h
+
+
+def build_sam_vit_l(checkpoint=None):
+    return _build_sam(
+        encoder_embed_dim=1024,
+        encoder_depth=24,
+        encoder_num_heads=16,
+        encoder_global_attn_indexes=[5, 11, 17, 23],
+        checkpoint=checkpoint,
+    )
+
+
+def build_sam_vit_b(checkpoint=None):
+    return _build_sam(
+        encoder_embed_dim=768,
+        encoder_depth=12,
+        encoder_num_heads=12,
+        encoder_global_attn_indexes=[2, 5, 8, 11],
+        checkpoint=checkpoint,
+    )
+
+
+def build_sam_vit_t(checkpoint=None):
+    prompt_embed_dim = 256
+    image_size = 1024
+    vit_patch_size = 16
+    image_embedding_size = image_size // vit_patch_size
+    mobile_sam = Sam(
+        image_encoder=TinyViT(
+            img_size=1024,
+            in_chans=3,
+            num_classes=1000,
+            embed_dims=[64, 128, 160, 320],
+            depths=[2, 2, 6, 2],
+            num_heads=[2, 4, 5, 10],
+            window_sizes=[7, 7, 14, 7],
+            mlp_ratio=4.0,
+            drop_rate=0.0,
+            drop_path_rate=0.0,
+            use_checkpoint=False,
+            mbconv_expand_ratio=4.0,
+            local_conv_size=3,
+            layer_lr_decay=0.8,
+        ),
+        prompt_encoder=PromptEncoder(
+            embed_dim=prompt_embed_dim,
+            image_embedding_size=(image_embedding_size, image_embedding_size),
+            input_image_size=(image_size, image_size),
+            mask_in_chans=16,
+        ),
+        mask_decoder=MaskDecoder(
+            num_multimask_outputs=3,
+            transformer=TwoWayTransformer(
+                depth=2,
+                embedding_dim=prompt_embed_dim,
+                mlp_dim=2048,
+                num_heads=8,
+            ),
+            transformer_dim=prompt_embed_dim,
+            iou_head_depth=3,
+            iou_head_hidden_dim=256,
+        ),
+        pixel_mean=[123.675, 116.28, 103.53],
+        pixel_std=[58.395, 57.12, 57.375],
+    )
+
+    mobile_sam.eval()
+    if checkpoint is not None:
+        with open(checkpoint, "rb") as f:
+            state_dict = torch.load(f)
+        mobile_sam.load_state_dict(state_dict)
+    return mobile_sam
+
+
+sam_model_registry = {
+    "default": build_sam,
+    "vit_h": build_sam,
+    "vit_l": build_sam_vit_l,
+    "vit_b": build_sam_vit_b,
+    "mobile_sam": build_sam_vit_t,
+}
+
+
+def _build_sam(
+    encoder_embed_dim,
+    encoder_depth,
+    encoder_num_heads,
+    encoder_global_attn_indexes,
+    checkpoint=None,
+):
+    prompt_embed_dim = 256
+    image_size = 1024
+    vit_patch_size = 16
+    image_embedding_size = image_size // vit_patch_size
+    sam = Sam(
+        image_encoder=ImageEncoderViT(
+            depth=encoder_depth,
+            embed_dim=encoder_embed_dim,
+            img_size=image_size,
+            mlp_ratio=4,
+            norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
+            num_heads=encoder_num_heads,
+            patch_size=vit_patch_size,
+            qkv_bias=True,
+            use_rel_pos=True,
+            global_attn_indexes=encoder_global_attn_indexes,
+            window_size=14,
+            out_chans=prompt_embed_dim,
+        ),
+        prompt_encoder=PromptEncoder(
+            embed_dim=prompt_embed_dim,
+            image_embedding_size=(image_embedding_size, image_embedding_size),
+            input_image_size=(image_size, image_size),
+            mask_in_chans=16,
+        ),
+        mask_decoder=MaskDecoder(
+            num_multimask_outputs=3,
+            transformer=TwoWayTransformer(
+                depth=2,
+                embedding_dim=prompt_embed_dim,
+                mlp_dim=2048,
+                num_heads=8,
+            ),
+            transformer_dim=prompt_embed_dim,
+            iou_head_depth=3,
+            iou_head_hidden_dim=256,
+        ),
+        pixel_mean=[123.675, 116.28, 103.53],
+        pixel_std=[58.395, 57.12, 57.375],
+    )
+    sam.eval()
+    if checkpoint is not None:
+        with open(checkpoint, "rb") as f:
+            state_dict = torch.load(f)
+        sam.load_state_dict(state_dict)
+    return sam
diff --git a/iopaint/plugins/segment_anything/modeling/common.py b/iopaint/plugins/segment_anything/modeling/common.py
new file mode 100644
index 0000000000000000000000000000000000000000..2bf15236a3eb24d8526073bc4fa2b274cccb3f96
--- /dev/null
+++ b/iopaint/plugins/segment_anything/modeling/common.py
@@ -0,0 +1,43 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+import torch.nn as nn
+
+from typing import Type
+
+
+class MLPBlock(nn.Module):
+    def __init__(
+        self,
+        embedding_dim: int,
+        mlp_dim: int,
+        act: Type[nn.Module] = nn.GELU,
+    ) -> None:
+        super().__init__()
+        self.lin1 = nn.Linear(embedding_dim, mlp_dim)
+        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
+        self.act = act()
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        return self.lin2(self.act(self.lin1(x)))
+
+
+# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
+# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119  # noqa
+class LayerNorm2d(nn.Module):
+    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
+        super().__init__()
+        self.weight = nn.Parameter(torch.ones(num_channels))
+        self.bias = nn.Parameter(torch.zeros(num_channels))
+        self.eps = eps
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        u = x.mean(1, keepdim=True)
+        s = (x - u).pow(2).mean(1, keepdim=True)
+        x = (x - u) / torch.sqrt(s + self.eps)
+        x = self.weight[:, None, None] * x + self.bias[:, None, None]
+        return x
diff --git a/iopaint/plugins/segment_anything/modeling/image_encoder.py b/iopaint/plugins/segment_anything/modeling/image_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..a6ad9ad2938842308e482a05c9d35ab08db9b2c3
--- /dev/null
+++ b/iopaint/plugins/segment_anything/modeling/image_encoder.py
@@ -0,0 +1,395 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from typing import Optional, Tuple, Type
+
+from .common import LayerNorm2d, MLPBlock
+
+
+# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
+class ImageEncoderViT(nn.Module):
+    def __init__(
+        self,
+        img_size: int = 1024,
+        patch_size: int = 16,
+        in_chans: int = 3,
+        embed_dim: int = 768,
+        depth: int = 12,
+        num_heads: int = 12,
+        mlp_ratio: float = 4.0,
+        out_chans: int = 256,
+        qkv_bias: bool = True,
+        norm_layer: Type[nn.Module] = nn.LayerNorm,
+        act_layer: Type[nn.Module] = nn.GELU,
+        use_abs_pos: bool = True,
+        use_rel_pos: bool = False,
+        rel_pos_zero_init: bool = True,
+        window_size: int = 0,
+        global_attn_indexes: Tuple[int, ...] = (),
+    ) -> None:
+        """
+        Args:
+            img_size (int): Input image size.
+            patch_size (int): Patch size.
+            in_chans (int): Number of input image channels.
+            embed_dim (int): Patch embedding dimension.
+            depth (int): Depth of ViT.
+            num_heads (int): Number of attention heads in each ViT block.
+            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+            qkv_bias (bool): If True, add a learnable bias to query, key, value.
+            norm_layer (nn.Module): Normalization layer.
+            act_layer (nn.Module): Activation layer.
+            use_abs_pos (bool): If True, use absolute positional embeddings.
+            use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
+            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
+            window_size (int): Window size for window attention blocks.
+            global_attn_indexes (list): Indexes for blocks using global attention.
+        """
+        super().__init__()
+        self.img_size = img_size
+
+        self.patch_embed = PatchEmbed(
+            kernel_size=(patch_size, patch_size),
+            stride=(patch_size, patch_size),
+            in_chans=in_chans,
+            embed_dim=embed_dim,
+        )
+
+        self.pos_embed: Optional[nn.Parameter] = None
+        if use_abs_pos:
+            # Initialize absolute positional embedding with pretrain image size.
+            self.pos_embed = nn.Parameter(
+                torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
+            )
+
+        self.blocks = nn.ModuleList()
+        for i in range(depth):
+            block = Block(
+                dim=embed_dim,
+                num_heads=num_heads,
+                mlp_ratio=mlp_ratio,
+                qkv_bias=qkv_bias,
+                norm_layer=norm_layer,
+                act_layer=act_layer,
+                use_rel_pos=use_rel_pos,
+                rel_pos_zero_init=rel_pos_zero_init,
+                window_size=window_size if i not in global_attn_indexes else 0,
+                input_size=(img_size // patch_size, img_size // patch_size),
+            )
+            self.blocks.append(block)
+
+        self.neck = nn.Sequential(
+            nn.Conv2d(
+                embed_dim,
+                out_chans,
+                kernel_size=1,
+                bias=False,
+            ),
+            LayerNorm2d(out_chans),
+            nn.Conv2d(
+                out_chans,
+                out_chans,
+                kernel_size=3,
+                padding=1,
+                bias=False,
+            ),
+            LayerNorm2d(out_chans),
+        )
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        x = self.patch_embed(x)
+        if self.pos_embed is not None:
+            x = x + self.pos_embed
+
+        for blk in self.blocks:
+            x = blk(x)
+
+        x = self.neck(x.permute(0, 3, 1, 2))
+
+        return x
+
+
+class Block(nn.Module):
+    """Transformer blocks with support of window attention and residual propagation blocks"""
+
+    def __init__(
+        self,
+        dim: int,
+        num_heads: int,
+        mlp_ratio: float = 4.0,
+        qkv_bias: bool = True,
+        norm_layer: Type[nn.Module] = nn.LayerNorm,
+        act_layer: Type[nn.Module] = nn.GELU,
+        use_rel_pos: bool = False,
+        rel_pos_zero_init: bool = True,
+        window_size: int = 0,
+        input_size: Optional[Tuple[int, int]] = None,
+    ) -> None:
+        """
+        Args:
+            dim (int): Number of input channels.
+            num_heads (int): Number of attention heads in each ViT block.
+            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+            qkv_bias (bool): If True, add a learnable bias to query, key, value.
+            norm_layer (nn.Module): Normalization layer.
+            act_layer (nn.Module): Activation layer.
+            use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
+            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
+            window_size (int): Window size for window attention blocks. If it equals 0, then
+                use global attention.
+            input_size (int or None): Input resolution for calculating the relative positional
+                parameter size.
+        """
+        super().__init__()
+        self.norm1 = norm_layer(dim)
+        self.attn = Attention(
+            dim,
+            num_heads=num_heads,
+            qkv_bias=qkv_bias,
+            use_rel_pos=use_rel_pos,
+            rel_pos_zero_init=rel_pos_zero_init,
+            input_size=input_size if window_size == 0 else (window_size, window_size),
+        )
+
+        self.norm2 = norm_layer(dim)
+        self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
+
+        self.window_size = window_size
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        shortcut = x
+        x = self.norm1(x)
+        # Window partition
+        if self.window_size > 0:
+            H, W = x.shape[1], x.shape[2]
+            x, pad_hw = window_partition(x, self.window_size)
+
+        x = self.attn(x)
+        # Reverse window partition
+        if self.window_size > 0:
+            x = window_unpartition(x, self.window_size, pad_hw, (H, W))
+
+        x = shortcut + x
+        x = x + self.mlp(self.norm2(x))
+
+        return x
+
+
+class Attention(nn.Module):
+    """Multi-head Attention block with relative position embeddings."""
+
+    def __init__(
+        self,
+        dim: int,
+        num_heads: int = 8,
+        qkv_bias: bool = True,
+        use_rel_pos: bool = False,
+        rel_pos_zero_init: bool = True,
+        input_size: Optional[Tuple[int, int]] = None,
+    ) -> None:
+        """
+        Args:
+            dim (int): Number of input channels.
+            num_heads (int): Number of attention heads.
+            qkv_bias (bool:  If True, add a learnable bias to query, key, value.
+            rel_pos (bool): If True, add relative positional embeddings to the attention map.
+            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
+            input_size (int or None): Input resolution for calculating the relative positional
+                parameter size.
+        """
+        super().__init__()
+        self.num_heads = num_heads
+        head_dim = dim // num_heads
+        self.scale = head_dim**-0.5
+
+        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
+        self.proj = nn.Linear(dim, dim)
+
+        self.use_rel_pos = use_rel_pos
+        if self.use_rel_pos:
+            assert (
+                input_size is not None
+            ), "Input size must be provided if using relative positional encoding."
+            # initialize relative positional embeddings
+            self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
+            self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        B, H, W, _ = x.shape
+        # qkv with shape (3, B, nHead, H * W, C)
+        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
+        # q, k, v with shape (B * nHead, H * W, C)
+        q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
+
+        attn = (q * self.scale) @ k.transpose(-2, -1)
+
+        if self.use_rel_pos:
+            attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
+
+        attn = attn.softmax(dim=-1)
+        x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
+        x = self.proj(x)
+
+        return x
+
+
+def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
+    """
+    Partition into non-overlapping windows with padding if needed.
+    Args:
+        x (tensor): input tokens with [B, H, W, C].
+        window_size (int): window size.
+
+    Returns:
+        windows: windows after partition with [B * num_windows, window_size, window_size, C].
+        (Hp, Wp): padded height and width before partition
+    """
+    B, H, W, C = x.shape
+
+    pad_h = (window_size - H % window_size) % window_size
+    pad_w = (window_size - W % window_size) % window_size
+    if pad_h > 0 or pad_w > 0:
+        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
+    Hp, Wp = H + pad_h, W + pad_w
+
+    x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
+    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
+    return windows, (Hp, Wp)
+
+
+def window_unpartition(
+    windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
+) -> torch.Tensor:
+    """
+    Window unpartition into original sequences and removing padding.
+    Args:
+        x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
+        window_size (int): window size.
+        pad_hw (Tuple): padded height and width (Hp, Wp).
+        hw (Tuple): original height and width (H, W) before padding.
+
+    Returns:
+        x: unpartitioned sequences with [B, H, W, C].
+    """
+    Hp, Wp = pad_hw
+    H, W = hw
+    B = windows.shape[0] // (Hp * Wp // window_size // window_size)
+    x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
+    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
+
+    if Hp > H or Wp > W:
+        x = x[:, :H, :W, :].contiguous()
+    return x
+
+
+def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
+    """
+    Get relative positional embeddings according to the relative positions of
+        query and key sizes.
+    Args:
+        q_size (int): size of query q.
+        k_size (int): size of key k.
+        rel_pos (Tensor): relative position embeddings (L, C).
+
+    Returns:
+        Extracted positional embeddings according to relative positions.
+    """
+    max_rel_dist = int(2 * max(q_size, k_size) - 1)
+    # Interpolate rel pos if needed.
+    if rel_pos.shape[0] != max_rel_dist:
+        # Interpolate rel pos.
+        rel_pos_resized = F.interpolate(
+            rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
+            size=max_rel_dist,
+            mode="linear",
+        )
+        rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
+    else:
+        rel_pos_resized = rel_pos
+
+    # Scale the coords with short length if shapes for q and k are different.
+    q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
+    k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
+    relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
+
+    return rel_pos_resized[relative_coords.long()]
+
+
+def add_decomposed_rel_pos(
+    attn: torch.Tensor,
+    q: torch.Tensor,
+    rel_pos_h: torch.Tensor,
+    rel_pos_w: torch.Tensor,
+    q_size: Tuple[int, int],
+    k_size: Tuple[int, int],
+) -> torch.Tensor:
+    """
+    Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
+    https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py   # noqa B950
+    Args:
+        attn (Tensor): attention map.
+        q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
+        rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
+        rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
+        q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
+        k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
+
+    Returns:
+        attn (Tensor): attention map with added relative positional embeddings.
+    """
+    q_h, q_w = q_size
+    k_h, k_w = k_size
+    Rh = get_rel_pos(q_h, k_h, rel_pos_h)
+    Rw = get_rel_pos(q_w, k_w, rel_pos_w)
+
+    B, _, dim = q.shape
+    r_q = q.reshape(B, q_h, q_w, dim)
+    rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
+    rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
+
+    attn = (
+        attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
+    ).view(B, q_h * q_w, k_h * k_w)
+
+    return attn
+
+
+class PatchEmbed(nn.Module):
+    """
+    Image to Patch Embedding.
+    """
+
+    def __init__(
+        self,
+        kernel_size: Tuple[int, int] = (16, 16),
+        stride: Tuple[int, int] = (16, 16),
+        padding: Tuple[int, int] = (0, 0),
+        in_chans: int = 3,
+        embed_dim: int = 768,
+    ) -> None:
+        """
+        Args:
+            kernel_size (Tuple): kernel size of the projection layer.
+            stride (Tuple): stride of the projection layer.
+            padding (Tuple): padding size of the projection layer.
+            in_chans (int): Number of input image channels.
+            embed_dim (int):  embed_dim (int): Patch embedding dimension.
+        """
+        super().__init__()
+
+        self.proj = nn.Conv2d(
+            in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
+        )
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        x = self.proj(x)
+        # B C H W -> B H W C
+        x = x.permute(0, 2, 3, 1)
+        return x
diff --git a/iopaint/plugins/segment_anything/modeling/mask_decoder.py b/iopaint/plugins/segment_anything/modeling/mask_decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..3e86f7cc9ad95582a08ef2531c68d03fa4af8d99
--- /dev/null
+++ b/iopaint/plugins/segment_anything/modeling/mask_decoder.py
@@ -0,0 +1,176 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from typing import List, Tuple, Type
+
+from .common import LayerNorm2d
+
+
+class MaskDecoder(nn.Module):
+    def __init__(
+        self,
+        *,
+        transformer_dim: int,
+        transformer: nn.Module,
+        num_multimask_outputs: int = 3,
+        activation: Type[nn.Module] = nn.GELU,
+        iou_head_depth: int = 3,
+        iou_head_hidden_dim: int = 256,
+    ) -> None:
+        """
+        Predicts masks given an image and prompt embeddings, using a
+        tranformer architecture.
+
+        Arguments:
+          transformer_dim (int): the channel dimension of the transformer
+          transformer (nn.Module): the transformer used to predict masks
+          num_multimask_outputs (int): the number of masks to predict
+            when disambiguating masks
+          activation (nn.Module): the type of activation to use when
+            upscaling masks
+          iou_head_depth (int): the depth of the MLP used to predict
+            mask quality
+          iou_head_hidden_dim (int): the hidden dimension of the MLP
+            used to predict mask quality
+        """
+        super().__init__()
+        self.transformer_dim = transformer_dim
+        self.transformer = transformer
+
+        self.num_multimask_outputs = num_multimask_outputs
+
+        self.iou_token = nn.Embedding(1, transformer_dim)
+        self.num_mask_tokens = num_multimask_outputs + 1
+        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
+
+        self.output_upscaling = nn.Sequential(
+            nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
+            LayerNorm2d(transformer_dim // 4),
+            activation(),
+            nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
+            activation(),
+        )
+        self.output_hypernetworks_mlps = nn.ModuleList(
+            [
+                MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
+                for i in range(self.num_mask_tokens)
+            ]
+        )
+
+        self.iou_prediction_head = MLP(
+            transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
+        )
+
+    def forward(
+        self,
+        image_embeddings: torch.Tensor,
+        image_pe: torch.Tensor,
+        sparse_prompt_embeddings: torch.Tensor,
+        dense_prompt_embeddings: torch.Tensor,
+        multimask_output: bool,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        """
+        Predict masks given image and prompt embeddings.
+
+        Arguments:
+          image_embeddings (torch.Tensor): the embeddings from the image encoder
+          image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
+          sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
+          dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
+          multimask_output (bool): Whether to return multiple masks or a single
+            mask.
+
+        Returns:
+          torch.Tensor: batched predicted masks
+          torch.Tensor: batched predictions of mask quality
+        """
+        masks, iou_pred = self.predict_masks(
+            image_embeddings=image_embeddings,
+            image_pe=image_pe,
+            sparse_prompt_embeddings=sparse_prompt_embeddings,
+            dense_prompt_embeddings=dense_prompt_embeddings,
+        )
+
+        # Select the correct mask or masks for outptu
+        if multimask_output:
+            mask_slice = slice(1, None)
+        else:
+            mask_slice = slice(0, 1)
+        masks = masks[:, mask_slice, :, :]
+        iou_pred = iou_pred[:, mask_slice]
+
+        # Prepare output
+        return masks, iou_pred
+
+    def predict_masks(
+        self,
+        image_embeddings: torch.Tensor,
+        image_pe: torch.Tensor,
+        sparse_prompt_embeddings: torch.Tensor,
+        dense_prompt_embeddings: torch.Tensor,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        """Predicts masks. See 'forward' for more details."""
+        # Concatenate output tokens
+        output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
+        output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
+        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
+
+        # Expand per-image data in batch direction to be per-mask
+        src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
+        src = src + dense_prompt_embeddings
+        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
+        b, c, h, w = src.shape
+
+        # Run the transformer
+        hs, src = self.transformer(src, pos_src, tokens)
+        iou_token_out = hs[:, 0, :]
+        mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
+
+        # Upscale mask embeddings and predict masks using the mask tokens
+        src = src.transpose(1, 2).view(b, c, h, w)
+        upscaled_embedding = self.output_upscaling(src)
+        hyper_in_list: List[torch.Tensor] = []
+        for i in range(self.num_mask_tokens):
+            hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
+        hyper_in = torch.stack(hyper_in_list, dim=1)
+        b, c, h, w = upscaled_embedding.shape
+        masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
+
+        # Generate mask quality predictions
+        iou_pred = self.iou_prediction_head(iou_token_out)
+
+        return masks, iou_pred
+
+
+# Lightly adapted from
+# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
+class MLP(nn.Module):
+    def __init__(
+        self,
+        input_dim: int,
+        hidden_dim: int,
+        output_dim: int,
+        num_layers: int,
+        sigmoid_output: bool = False,
+    ) -> None:
+        super().__init__()
+        self.num_layers = num_layers
+        h = [hidden_dim] * (num_layers - 1)
+        self.layers = nn.ModuleList(
+            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
+        )
+        self.sigmoid_output = sigmoid_output
+
+    def forward(self, x):
+        for i, layer in enumerate(self.layers):
+            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
+        if self.sigmoid_output:
+            x = F.sigmoid(x)
+        return x
diff --git a/model/networks.py b/model/networks.py
new file mode 100644
index 0000000000000000000000000000000000000000..935792a79e3d624f4e03e7130852901461144043
--- /dev/null
+++ b/model/networks.py
@@ -0,0 +1,563 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn.utils import spectral_norm as spectral_norm_fn
+from torch.nn.utils import weight_norm as weight_norm_fn
+from PIL import Image
+from torchvision import transforms
+from torchvision import utils as vutils
+
+from utils.tools import extract_image_patches, flow_to_image, \
+    reduce_mean, reduce_sum, default_loader, same_padding
+
+
+class Generator(nn.Module):
+    def __init__(self, config, use_cuda, device_ids):
+        super(Generator, self).__init__()
+        self.input_dim = config['input_dim']
+        self.cnum = config['ngf']
+        self.use_cuda = use_cuda
+        self.device_ids = device_ids
+
+        self.coarse_generator = CoarseGenerator(self.input_dim, self.cnum, self.use_cuda, self.device_ids)
+        self.fine_generator = FineGenerator(self.input_dim, self.cnum, self.use_cuda, self.device_ids)
+
+    def forward(self, x, mask):
+        x_stage1 = self.coarse_generator(x, mask)
+        x_stage2, offset_flow = self.fine_generator(x, x_stage1, mask)
+        return x_stage1, x_stage2, offset_flow
+
+
+class CoarseGenerator(nn.Module):
+    def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None):
+        super(CoarseGenerator, self).__init__()
+        self.use_cuda = use_cuda
+        self.device_ids = device_ids
+
+        self.conv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2)
+        self.conv2_downsample = gen_conv(cnum, cnum*2, 3, 2, 1)
+        self.conv3 = gen_conv(cnum*2, cnum*2, 3, 1, 1)
+        self.conv4_downsample = gen_conv(cnum*2, cnum*4, 3, 2, 1)
+        self.conv5 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
+        self.conv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
+
+        self.conv7_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 2, rate=2)
+        self.conv8_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 4, rate=4)
+        self.conv9_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 8, rate=8)
+        self.conv10_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 16, rate=16)
+
+        self.conv11 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
+        self.conv12 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
+
+        self.conv13 = gen_conv(cnum*4, cnum*2, 3, 1, 1)
+        self.conv14 = gen_conv(cnum*2, cnum*2, 3, 1, 1)
+        self.conv15 = gen_conv(cnum*2, cnum, 3, 1, 1)
+        self.conv16 = gen_conv(cnum, cnum//2, 3, 1, 1)
+        self.conv17 = gen_conv(cnum//2, input_dim, 3, 1, 1, activation='none')
+
+    def forward(self, x, mask):
+        # For indicating the boundaries of images
+        ones = torch.ones(x.size(0), 1, x.size(2), x.size(3))
+        if self.use_cuda:
+            ones = ones.cuda()
+            mask = mask.cuda()
+        # 5 x 256 x 256
+        x = self.conv1(torch.cat([x, ones, mask], dim=1))
+        x = self.conv2_downsample(x)
+        # cnum*2 x 128 x 128
+        x = self.conv3(x)
+        x = self.conv4_downsample(x)
+        # cnum*4 x 64 x 64
+        x = self.conv5(x)
+        x = self.conv6(x)
+        x = self.conv7_atrous(x)
+        x = self.conv8_atrous(x)
+        x = self.conv9_atrous(x)
+        x = self.conv10_atrous(x)
+        x = self.conv11(x)
+        x = self.conv12(x)
+        x = F.interpolate(x, scale_factor=2, mode='nearest')
+        # cnum*2 x 128 x 128
+        x = self.conv13(x)
+        x = self.conv14(x)
+        x = F.interpolate(x, scale_factor=2, mode='nearest')
+        # cnum x 256 x 256
+        x = self.conv15(x)
+        x = self.conv16(x)
+        x = self.conv17(x)
+        # 3 x 256 x 256
+        x_stage1 = torch.clamp(x, -1., 1.)
+
+        return x_stage1
+
+
+class FineGenerator(nn.Module):
+    def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None):
+        super(FineGenerator, self).__init__()
+        self.use_cuda = use_cuda
+        self.device_ids = device_ids
+
+        # 3 x 256 x 256
+        self.conv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2)
+        self.conv2_downsample = gen_conv(cnum, cnum, 3, 2, 1)
+        # cnum*2 x 128 x 128
+        self.conv3 = gen_conv(cnum, cnum*2, 3, 1, 1)
+        self.conv4_downsample = gen_conv(cnum*2, cnum*2, 3, 2, 1)
+        # cnum*4 x 64 x 64
+        self.conv5 = gen_conv(cnum*2, cnum*4, 3, 1, 1)
+        self.conv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
+
+        self.conv7_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 2, rate=2)
+        self.conv8_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 4, rate=4)
+        self.conv9_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 8, rate=8)
+        self.conv10_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 16, rate=16)
+
+        # attention branch
+        # 3 x 256 x 256
+        self.pmconv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2)
+        self.pmconv2_downsample = gen_conv(cnum, cnum, 3, 2, 1)
+        # cnum*2 x 128 x 128
+        self.pmconv3 = gen_conv(cnum, cnum*2, 3, 1, 1)
+        self.pmconv4_downsample = gen_conv(cnum*2, cnum*4, 3, 2, 1)
+        # cnum*4 x 64 x 64
+        self.pmconv5 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
+        self.pmconv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1, activation='relu')
+        self.contextul_attention = ContextualAttention(ksize=3, stride=1, rate=2, fuse_k=3, softmax_scale=10,
+                                                       fuse=True, use_cuda=self.use_cuda, device_ids=self.device_ids)
+        self.pmconv9 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
+        self.pmconv10 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
+        self.allconv11 = gen_conv(cnum*8, cnum*4, 3, 1, 1)
+        self.allconv12 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
+        self.allconv13 = gen_conv(cnum*4, cnum*2, 3, 1, 1)
+        self.allconv14 = gen_conv(cnum*2, cnum*2, 3, 1, 1)
+        self.allconv15 = gen_conv(cnum*2, cnum, 3, 1, 1)
+        self.allconv16 = gen_conv(cnum, cnum//2, 3, 1, 1)
+        self.allconv17 = gen_conv(cnum//2, input_dim, 3, 1, 1, activation='none')
+
+    def forward(self, xin, x_stage1, mask):
+        x1_inpaint = x_stage1 * mask + xin * (1. - mask)
+        # For indicating the boundaries of images
+        ones = torch.ones(xin.size(0), 1, xin.size(2), xin.size(3))
+        if self.use_cuda:
+            ones = ones.cuda()
+            mask = mask.cuda()
+        # conv branch
+        xnow = torch.cat([x1_inpaint, ones, mask], dim=1)
+        x = self.conv1(xnow)
+        x = self.conv2_downsample(x)
+        x = self.conv3(x)
+        x = self.conv4_downsample(x)
+        x = self.conv5(x)
+        x = self.conv6(x)
+        x = self.conv7_atrous(x)
+        x = self.conv8_atrous(x)
+        x = self.conv9_atrous(x)
+        x = self.conv10_atrous(x)
+        x_hallu = x
+        # attention branch
+        x = self.pmconv1(xnow)
+        x = self.pmconv2_downsample(x)
+        x = self.pmconv3(x)
+        x = self.pmconv4_downsample(x)
+        x = self.pmconv5(x)
+        x = self.pmconv6(x)
+        x, offset_flow = self.contextul_attention(x, x, mask)
+        x = self.pmconv9(x)
+        x = self.pmconv10(x)
+        pm = x
+        x = torch.cat([x_hallu, pm], dim=1)
+        # merge two branches
+        x = self.allconv11(x)
+        x = self.allconv12(x)
+        x = F.interpolate(x, scale_factor=2, mode='nearest')
+        x = self.allconv13(x)
+        x = self.allconv14(x)
+        x = F.interpolate(x, scale_factor=2, mode='nearest')
+        x = self.allconv15(x)
+        x = self.allconv16(x)
+        x = self.allconv17(x)
+        x_stage2 = torch.clamp(x, -1., 1.)
+
+        return x_stage2, offset_flow
+
+
+class ContextualAttention(nn.Module):
+    def __init__(self, ksize=3, stride=1, rate=1, fuse_k=3, softmax_scale=10,
+                 fuse=False, use_cuda=False, device_ids=None):
+        super(ContextualAttention, self).__init__()
+        self.ksize = ksize
+        self.stride = stride
+        self.rate = rate
+        self.fuse_k = fuse_k
+        self.softmax_scale = softmax_scale
+        self.fuse = fuse
+        self.use_cuda = use_cuda
+        self.device_ids = device_ids
+
+    def forward(self, f, b, mask=None):
+        """ Contextual attention layer implementation.
+        Contextual attention is first introduced in publication:
+            Generative Image Inpainting with Contextual Attention, Yu et al.
+        Args:
+            f: Input feature to match (foreground).
+            b: Input feature for match (background).
+            mask: Input mask for b, indicating patches not available.
+            ksize: Kernel size for contextual attention.
+            stride: Stride for extracting patches from b.
+            rate: Dilation for matching.
+            softmax_scale: Scaled softmax for attention.
+        Returns:
+            torch.tensor: output
+        """
+        # get shapes
+        raw_int_fs = list(f.size())   # b*c*h*w
+        raw_int_bs = list(b.size())   # b*c*h*w
+
+        # extract patches from background with stride and rate
+        kernel = 2 * self.rate
+        # raw_w is extracted for reconstruction
+        raw_w = extract_image_patches(b, ksizes=[kernel, kernel],
+                                      strides=[self.rate*self.stride,
+                                               self.rate*self.stride],
+                                      rates=[1, 1],
+                                      padding='same') # [N, C*k*k, L]
+        # raw_shape: [N, C, k, k, L]
+        raw_w = raw_w.view(raw_int_bs[0], raw_int_bs[1], kernel, kernel, -1)
+        raw_w = raw_w.permute(0, 4, 1, 2, 3)    # raw_shape: [N, L, C, k, k]
+        raw_w_groups = torch.split(raw_w, 1, dim=0)
+
+        # downscaling foreground option: downscaling both foreground and
+        # background for matching and use original background for reconstruction.
+        f = F.interpolate(f, scale_factor=1./self.rate, mode='nearest')
+        b = F.interpolate(b, scale_factor=1./self.rate, mode='nearest')
+        int_fs = list(f.size())     # b*c*h*w
+        int_bs = list(b.size())
+        f_groups = torch.split(f, 1, dim=0)  # split tensors along the batch dimension
+        # w shape: [N, C*k*k, L]
+        w = extract_image_patches(b, ksizes=[self.ksize, self.ksize],
+                                  strides=[self.stride, self.stride],
+                                  rates=[1, 1],
+                                  padding='same')
+        # w shape: [N, C, k, k, L]
+        w = w.view(int_bs[0], int_bs[1], self.ksize, self.ksize, -1)
+        w = w.permute(0, 4, 1, 2, 3)    # w shape: [N, L, C, k, k]
+        w_groups = torch.split(w, 1, dim=0)
+
+        # process mask
+        if mask is None:
+            mask = torch.zeros([int_bs[0], 1, int_bs[2], int_bs[3]])
+            if self.use_cuda:
+                mask = mask.cuda()
+        else:
+            mask = F.interpolate(mask, scale_factor=1./(4*self.rate), mode='nearest')
+        int_ms = list(mask.size())
+        # m shape: [N, C*k*k, L]
+        m = extract_image_patches(mask, ksizes=[self.ksize, self.ksize],
+                                  strides=[self.stride, self.stride],
+                                  rates=[1, 1],
+                                  padding='same')
+        # m shape: [N, C, k, k, L]
+        m = m.view(int_ms[0], int_ms[1], self.ksize, self.ksize, -1)
+        m = m.permute(0, 4, 1, 2, 3)    # m shape: [N, L, C, k, k]
+        m = m[0]    # m shape: [L, C, k, k]
+        # mm shape: [L, 1, 1, 1]
+        mm = (reduce_mean(m, axis=[1, 2, 3], keepdim=True)==0.).to(torch.float32)
+        mm = mm.permute(1, 0, 2, 3) # mm shape: [1, L, 1, 1]
+
+        y = []
+        offsets = []
+        k = self.fuse_k
+        scale = self.softmax_scale    # to fit the PyTorch tensor image value range
+        fuse_weight = torch.eye(k).view(1, 1, k, k)  # 1*1*k*k
+        if self.use_cuda:
+            fuse_weight = fuse_weight.cuda()
+
+        for xi, wi, raw_wi in zip(f_groups, w_groups, raw_w_groups):
+            '''
+            O => output channel as a conv filter
+            I => input channel as a conv filter
+            xi : separated tensor along batch dimension of front; (B=1, C=128, H=32, W=32)
+            wi : separated patch tensor along batch dimension of back; (B=1, O=32*32, I=128, KH=3, KW=3)
+            raw_wi : separated tensor along batch dimension of back; (B=1, I=32*32, O=128, KH=4, KW=4)
+            '''
+            # conv for compare
+            escape_NaN = torch.FloatTensor([1e-4])
+            if self.use_cuda:
+                escape_NaN = escape_NaN.cuda()
+            wi = wi[0]  # [L, C, k, k]
+            max_wi = torch.sqrt(reduce_sum(torch.pow(wi, 2) + escape_NaN, axis=[1, 2, 3], keepdim=True))
+            wi_normed = wi / max_wi
+            # xi shape: [1, C, H, W], yi shape: [1, L, H, W]
+            xi = same_padding(xi, [self.ksize, self.ksize], [1, 1], [1, 1])  # xi: 1*c*H*W
+            yi = F.conv2d(xi, wi_normed, stride=1)   # [1, L, H, W]
+            # conv implementation for fuse scores to encourage large patches
+            if self.fuse:
+                # make all of depth to spatial resolution
+                yi = yi.view(1, 1, int_bs[2]*int_bs[3], int_fs[2]*int_fs[3])  # (B=1, I=1, H=32*32, W=32*32)
+                yi = same_padding(yi, [k, k], [1, 1], [1, 1])
+                yi = F.conv2d(yi, fuse_weight, stride=1)  # (B=1, C=1, H=32*32, W=32*32)
+                yi = yi.contiguous().view(1, int_bs[2], int_bs[3], int_fs[2], int_fs[3])  # (B=1, 32, 32, 32, 32)
+                yi = yi.permute(0, 2, 1, 4, 3)
+                yi = yi.contiguous().view(1, 1, int_bs[2]*int_bs[3], int_fs[2]*int_fs[3])
+                yi = same_padding(yi, [k, k], [1, 1], [1, 1])
+                yi = F.conv2d(yi, fuse_weight, stride=1)
+                yi = yi.contiguous().view(1, int_bs[3], int_bs[2], int_fs[3], int_fs[2])
+                yi = yi.permute(0, 2, 1, 4, 3).contiguous()
+            yi = yi.view(1, int_bs[2] * int_bs[3], int_fs[2], int_fs[3])  # (B=1, C=32*32, H=32, W=32)
+            # softmax to match
+            yi = yi * mm
+            yi = F.softmax(yi*scale, dim=1)
+            yi = yi * mm  # [1, L, H, W]
+
+            offset = torch.argmax(yi, dim=1, keepdim=True)  # 1*1*H*W
+
+            if int_bs != int_fs:
+                # Normalize the offset value to match foreground dimension
+                times = float(int_fs[2] * int_fs[3]) / float(int_bs[2] * int_bs[3])
+                offset = ((offset + 1).float() * times - 1).to(torch.int64)
+            offset = torch.cat([offset//int_fs[3], offset%int_fs[3]], dim=1)  # 1*2*H*W
+
+            # deconv for patch pasting
+            wi_center = raw_wi[0]
+            # yi = F.pad(yi, [0, 1, 0, 1])    # here may need conv_transpose same padding
+            yi = F.conv_transpose2d(yi, wi_center, stride=self.rate, padding=1) / 4.  # (B=1, C=128, H=64, W=64)
+            y.append(yi)
+            offsets.append(offset)
+
+        y = torch.cat(y, dim=0)  # back to the mini-batch
+        y.contiguous().view(raw_int_fs)
+
+        offsets = torch.cat(offsets, dim=0)
+        offsets = offsets.view(int_fs[0], 2, *int_fs[2:])
+
+        # case1: visualize optical flow: minus current position
+        h_add = torch.arange(int_fs[2]).view([1, 1, int_fs[2], 1]).expand(int_fs[0], -1, -1, int_fs[3])
+        w_add = torch.arange(int_fs[3]).view([1, 1, 1, int_fs[3]]).expand(int_fs[0], -1, int_fs[2], -1)
+        ref_coordinate = torch.cat([h_add, w_add], dim=1)
+        if self.use_cuda:
+            ref_coordinate = ref_coordinate.cuda()
+
+        offsets = offsets - ref_coordinate
+        # flow = pt_flow_to_image(offsets)
+
+        flow = torch.from_numpy(flow_to_image(offsets.permute(0, 2, 3, 1).cpu().data.numpy())) / 255.
+        flow = flow.permute(0, 3, 1, 2)
+        if self.use_cuda:
+            flow = flow.cuda()
+        # case2: visualize which pixels are attended
+        # flow = torch.from_numpy(highlight_flow((offsets * mask.long()).cpu().data.numpy()))
+
+        if self.rate != 1:
+            flow = F.interpolate(flow, scale_factor=self.rate*4, mode='nearest')
+
+        return y, flow
+
+
+def test_contextual_attention(args):
+    import cv2
+    import os
+    # run on cpu
+    os.environ['CUDA_VISIBLE_DEVICES'] = '2'
+
+    def float_to_uint8(img):
+        img = img * 255
+        return img.astype('uint8')
+
+    rate = 2
+    stride = 1
+    grid = rate*stride
+
+    b = default_loader(args.imageA)
+    w, h = b.size
+    b = b.resize((w//grid*grid//2, h//grid*grid//2), Image.ANTIALIAS)
+    # b = b.resize((w//grid*grid, h//grid*grid), Image.ANTIALIAS)
+    print('Size of imageA: {}'.format(b.size))
+
+    f = default_loader(args.imageB)
+    w, h = f.size
+    f = f.resize((w//grid*grid, h//grid*grid), Image.ANTIALIAS)
+    print('Size of imageB: {}'.format(f.size))
+
+    f, b = transforms.ToTensor()(f), transforms.ToTensor()(b)
+    f, b = f.unsqueeze(0), b.unsqueeze(0)
+    if torch.cuda.is_available():
+        f, b = f.cuda(), b.cuda()
+
+    contextual_attention = ContextualAttention(ksize=3, stride=stride, rate=rate, fuse=True)
+
+    if torch.cuda.is_available():
+        contextual_attention = contextual_attention.cuda()
+
+    yt, flow_t = contextual_attention(f, b)
+    vutils.save_image(yt, 'vutils' + args.imageOut, normalize=True)
+    vutils.save_image(flow_t, 'flow' + args.imageOut, normalize=True)
+    # y = tensor_img_to_npimg(yt.cpu()[0])
+    # flow = tensor_img_to_npimg(flow_t.cpu()[0])
+    # cv2.imwrite('flow' + args.imageOut, flow_t)
+
+
+class LocalDis(nn.Module):
+    def __init__(self, config, use_cuda=True, device_ids=None):
+        super(LocalDis, self).__init__()
+        self.input_dim = config['input_dim']
+        self.cnum = config['ndf']
+        self.use_cuda = use_cuda
+        self.device_ids = device_ids
+
+        self.dis_conv_module = DisConvModule(self.input_dim, self.cnum)
+        self.linear = nn.Linear(self.cnum*4*8*8, 1)
+
+    def forward(self, x):
+        x = self.dis_conv_module(x)
+        x = x.view(x.size()[0], -1)
+        x = self.linear(x)
+
+        return x
+
+
+class GlobalDis(nn.Module):
+    def __init__(self, config, use_cuda=True, device_ids=None):
+        super(GlobalDis, self).__init__()
+        self.input_dim = config['input_dim']
+        self.cnum = config['ndf']
+        self.use_cuda = use_cuda
+        self.device_ids = device_ids
+
+        self.dis_conv_module = DisConvModule(self.input_dim, self.cnum)
+        self.linear = nn.Linear(self.cnum*4*16*16, 1)
+
+    def forward(self, x):
+        x = self.dis_conv_module(x)
+        x = x.view(x.size()[0], -1)
+        x = self.linear(x)
+
+        return x
+
+
+class DisConvModule(nn.Module):
+    def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None):
+        super(DisConvModule, self).__init__()
+        self.use_cuda = use_cuda
+        self.device_ids = device_ids
+
+        self.conv1 = dis_conv(input_dim, cnum, 5, 2, 2)
+        self.conv2 = dis_conv(cnum, cnum*2, 5, 2, 2)
+        self.conv3 = dis_conv(cnum*2, cnum*4, 5, 2, 2)
+        self.conv4 = dis_conv(cnum*4, cnum*4, 5, 2, 2)
+
+    def forward(self, x):
+        x = self.conv1(x)
+        x = self.conv2(x)
+        x = self.conv3(x)
+        x = self.conv4(x)
+
+        return x
+
+
+def gen_conv(input_dim, output_dim, kernel_size=3, stride=1, padding=0, rate=1,
+             activation='elu'):
+    return Conv2dBlock(input_dim, output_dim, kernel_size, stride,
+                       conv_padding=padding, dilation=rate,
+                       activation=activation)
+
+
+def dis_conv(input_dim, output_dim, kernel_size=5, stride=2, padding=0, rate=1,
+             activation='lrelu'):
+    return Conv2dBlock(input_dim, output_dim, kernel_size, stride,
+                       conv_padding=padding, dilation=rate,
+                       activation=activation)
+
+
+class Conv2dBlock(nn.Module):
+    def __init__(self, input_dim, output_dim, kernel_size, stride, padding=0,
+                 conv_padding=0, dilation=1, weight_norm='none', norm='none',
+                 activation='relu', pad_type='zero', transpose=False):
+        super(Conv2dBlock, self).__init__()
+        self.use_bias = True
+        # initialize padding
+        if pad_type == 'reflect':
+            self.pad = nn.ReflectionPad2d(padding)
+        elif pad_type == 'replicate':
+            self.pad = nn.ReplicationPad2d(padding)
+        elif pad_type == 'zero':
+            self.pad = nn.ZeroPad2d(padding)
+        elif pad_type == 'none':
+            self.pad = None
+        else:
+            assert 0, "Unsupported padding type: {}".format(pad_type)
+
+        # initialize normalization
+        norm_dim = output_dim
+        if norm == 'bn':
+            self.norm = nn.BatchNorm2d(norm_dim)
+        elif norm == 'in':
+            self.norm = nn.InstanceNorm2d(norm_dim)
+        elif norm == 'none':
+            self.norm = None
+        else:
+            assert 0, "Unsupported normalization: {}".format(norm)
+
+        if weight_norm == 'sn':
+            self.weight_norm = spectral_norm_fn
+        elif weight_norm == 'wn':
+            self.weight_norm = weight_norm_fn
+        elif weight_norm == 'none':
+            self.weight_norm = None
+        else:
+            assert 0, "Unsupported normalization: {}".format(weight_norm)
+
+        # initialize activation
+        if activation == 'relu':
+            self.activation = nn.ReLU(inplace=True)
+        elif activation == 'elu':
+            self.activation = nn.ELU(inplace=True)
+        elif activation == 'lrelu':
+            self.activation = nn.LeakyReLU(0.2, inplace=True)
+        elif activation == 'prelu':
+            self.activation = nn.PReLU()
+        elif activation == 'selu':
+            self.activation = nn.SELU(inplace=True)
+        elif activation == 'tanh':
+            self.activation = nn.Tanh()
+        elif activation == 'none':
+            self.activation = None
+        else:
+            assert 0, "Unsupported activation: {}".format(activation)
+
+        # initialize convolution
+        if transpose:
+            self.conv = nn.ConvTranspose2d(input_dim, output_dim,
+                                           kernel_size, stride,
+                                           padding=conv_padding,
+                                           output_padding=conv_padding,
+                                           dilation=dilation,
+                                           bias=self.use_bias)
+        else:
+            self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride,
+                                  padding=conv_padding, dilation=dilation,
+                                  bias=self.use_bias)
+
+        if self.weight_norm:
+            self.conv = self.weight_norm(self.conv)
+
+    def forward(self, x):
+        if self.pad:
+            x = self.conv(self.pad(x))
+        else:
+            x = self.conv(x)
+        if self.norm:
+            x = self.norm(x)
+        if self.activation:
+            x = self.activation(x)
+        return x
+
+
+
+if __name__ == "__main__":
+    import argparse
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--imageA', default='', type=str, help='Image A as background patches to reconstruct image B.')
+    parser.add_argument('--imageB', default='', type=str, help='Image B is reconstructed with image A.')
+    parser.add_argument('--imageOut', default='result.png', type=str, help='Image B is reconstructed with image A.')
+    args = parser.parse_args()
+    test_contextual_attention(args)
diff --git a/only_gradio_server.py b/only_gradio_server.py
new file mode 100644
index 0000000000000000000000000000000000000000..94b8214d893d0ac6204186b8480620e6eced92f0
--- /dev/null
+++ b/only_gradio_server.py
@@ -0,0 +1,188 @@
+import os
+import base64
+import io
+import uuid
+from ultralytics import YOLO
+import cv2
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+import imageio.v2 as imageio
+from trainer import Trainer
+from utils.tools import get_config
+import torch.nn.functional as F
+from iopaint.single_processing import batch_inpaint_cv2
+from pathlib import Path
+
+# set current working directory cache instead of default
+os.environ["TORCH_HOME"] = "./pretrained-model"
+os.environ["HUGGINGFACE_HUB_CACHE"] = "./pretrained-model"
+
+def resize_image(input_image_path, width=640, height=640):
+    """Resizes an image from image data and returns the resized image."""
+    try:
+        # Read the image using cv2.imread
+        img = cv2.imread(input_image_path, cv2.IMREAD_COLOR)
+
+        # Resize while maintaining the aspect ratio
+        shape = img.shape[:2]  # current shape [height, width]
+        new_shape = (width, height)  # the shape to resize to
+
+        # Scale ratio (new / old)
+        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+        ratio = r, r  # width, height ratios
+        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+
+        # Resize the image
+        im = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
+
+        # Pad the image
+        color = (114, 114, 114)  # color used for padding
+        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
+        # divide padding into 2 sides
+        dw /= 2
+        dh /= 2
+        # compute padding on all corners
+        top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+        left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+        im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
+        return im
+
+    except Exception as e:
+        print(f"Error resizing image: {e}")
+        return None  # Or handle differently as needed
+
+
+def load_weights(path, device):
+    model_weights = torch.load(path)
+    return {
+        k: v.to(device)
+        for k, v in model_weights.items()
+    }
+
+
+# Function to convert image to base64
+def convert_image_to_base64(image):
+    # Convert image to bytes
+    _, buffer = cv2.imencode('.png', image)
+    # Convert bytes to base64
+    image_base64 = base64.b64encode(buffer).decode('utf-8')
+    return image_base64
+
+
+def convert_to_base64(image):
+    # Read the image file as binary data
+    image_data = image.read()
+    # Encode the binary data as base64
+    base64_encoded = base64.b64encode(image_data).decode('utf-8')
+    return base64_encoded
+
+def convert_to_base64_file(image):
+    # Convert the image to binary data
+    image_data = cv2.imencode('.png', image)[1].tobytes()
+    # Encode the binary data as base64
+    base64_encoded = base64.b64encode(image_data).decode('utf-8')
+    return base64_encoded
+
+
+def process_images(input_image, append_image, default_class="chair"):
+    # Static paths
+    config_path = Path('configs/config.yaml')
+    model_path = Path('pretrained-model/torch_model.p')
+
+    # Resize input image and get base64 data of resized image
+    img = resize_image(input_image)
+
+    if img is None:
+        return {'error': 'Failed to decode resized image'}, 419
+
+    H, W, _ = img.shape
+    x_point = 0
+    y_point = 0
+    width = 1
+    height = 1
+
+    # Load a model
+    model = YOLO('pretrained-model/yolov8m-seg.pt')  # pretrained YOLOv8m-seg model
+
+    # Run batched inference on a list of images
+    results = model(img, imgsz=(W,H), conf=0.5)  # chair class 56 with confidence >= 0.5
+    names = model.names
+
+    class_found = False
+    for result in results:
+        for i, label in enumerate(result.boxes.cls):
+            # Check if the label matches the chair label
+            if names[int(label)] == default_class:
+                class_found = True
+                # Convert the tensor to a numpy array
+                chair_mask_np = result.masks.data[i].numpy()
+
+                kernel = np.ones((5, 5), np.uint8)  # Create a 5x5 kernel for dilation
+                chair_mask_np = cv2.dilate(chair_mask_np, kernel, iterations=2)  # Apply dilation
+
+                # Find contours to get bounding box
+                contours, _ = cv2.findContours((chair_mask_np == 1).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
+
+                # Iterate over contours to find the bounding box of each object
+                for contour in contours:
+                    x, y, w, h = cv2.boundingRect(contour)
+                    x_point = x
+                    y_point = y
+                    width = w
+                    height = h
+
+                # Get the corresponding mask
+                mask = result.masks.data[i].numpy() * 255
+                dilated_mask = cv2.dilate(mask, kernel, iterations=2)  # Apply dilation
+                # Resize the mask to match the dimensions of the original image
+                resized_mask = cv2.resize(dilated_mask, (img.shape[1], img.shape[0]))
+
+                # call repainting and merge function
+                output_base64 = repaitingAndMerge(append_image,str(model_path), str(config_path),width, height, x_point, y_point, img, resized_mask)
+                # Return the output base64 image in the API response
+                return output_base64
+
+    # return class not found in prediction
+    if not class_found:
+        return {'message': f'{default_class} object not found in the image'}, 200
+
+def repaitingAndMerge(append_image_path, model_path, config_path, width, height, xposition, yposition, input_base, mask_base):
+    config = get_config(config_path)
+    device = torch.device("cpu")
+    trainer = Trainer(config)
+    trainer.load_state_dict(load_weights(model_path, device), strict=False)
+    trainer.eval()
+
+    # lama inpainting start
+    print("lama inpainting start")
+    inpaint_result_np = batch_inpaint_cv2('lama', 'cpu', input_base, mask_base)
+    print("lama inpainting end")
+
+    # Create PIL Image from NumPy array
+    final_image = Image.fromarray(inpaint_result_np)
+
+    print("merge start")
+
+    # Load the append image using cv2.imread
+    append_image = cv2.imread(append_image_path, cv2.IMREAD_UNCHANGED)
+    cv2.imwrite('appneded-image.png',append_image)
+    # Resize the append image while preserving transparency
+    resized_image = cv2.resize(append_image, (width, height), interpolation=cv2.INTER_AREA)
+    # Convert the resized image to RGBA format (assuming it's in BGRA format)
+    resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGRA2RGBA)
+    # Create a PIL Image from the resized image with transparent background
+    append_image_pil = Image.fromarray(resized_image)
+
+    # Paste the append image onto the final image
+    final_image.paste(append_image_pil, (xposition, yposition), append_image_pil)
+    # Save the resulting image
+    print("merge end")
+
+    # Convert the final image to base64
+    with io.BytesIO() as output_buffer:
+        final_image.save(output_buffer, format='PNG')
+        output_numpy = np.array(final_image)
+
+    return output_numpy
diff --git a/templates/index.html b/templates/index.html
new file mode 100644
index 0000000000000000000000000000000000000000..3a6da75a50209552eb8d954ce2d43d6cdaee1451
--- /dev/null
+++ b/templates/index.html
@@ -0,0 +1,145 @@
+<!DOCTYPE html>
+<html lang="en">
+<head>
+    <meta charset="UTF-8">
+    <meta name="viewport" content="width=device-width, initial-scale=1.0">
+    <title>Object to Object Replace</title>
+    <style>
+        body {
+            font-family: Arial, sans-serif;
+            margin: 0;
+            padding: 0;
+            background-color: #f2f2f2;
+        }
+        h1 {
+            text-align: center;
+            margin-top: 20px;
+            color: #333;
+        }
+        #imageForm {
+            max-width: 600px;
+            margin: 0 auto;
+            text-align: center;
+            background-color: #fff;
+            padding: 20px;
+            border-radius: 8px;
+            box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
+        }
+        label {
+            display: block;
+            margin-bottom: 10px;
+            color: #555;
+        }
+        input[type="file"] {
+            display: none;
+        }
+        button {
+            background-color: #4CAF50;
+            color: white;
+            padding: 10px 20px;
+            border: none;
+            border-radius: 4px;
+            cursor: pointer;
+            transition: background-color 0.3s ease;
+        }
+        button:hover {
+            background-color: #45a049;
+        }
+        .image-container {
+            margin-top: 20px;
+            display: flex;
+            justify-content: space-around;
+        }
+        .image-container img {
+            max-width: 200px;
+            max-height: 200px;
+            border-radius: 8px;
+            box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
+        }
+        #responseImg img {
+            max-width: 200px;
+            max-height: 200px;
+            border-radius: 8px;
+            box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
+        }
+        #response {
+            margin-top: 20px;
+            text-align: center;
+        }
+    </style>
+</head>
+<body>
+    <h1>Object to Object Replace</h1>
+    <form id="imageForm" enctype="multipart/form-data">
+        <label for="inputImage">Select Input Image:</label>
+        <input type="file" id="inputImage" name="inputImage" accept="image/*" onchange="showImagePreview('inputImage', 'inputPreview')">
+        <label for="appendImage">Select Append Image:</label>
+        <input type="file" id="appendImage" name="appendImage" accept="image/*" onchange="showImagePreview('appendImage', 'appendPreview')">
+        <label for="objectName">Object Name:</label>
+        <input type="text" id="objectName" name="objectName">
+        <button type="button" onclick="submitImages()">Submit</button>
+    </form>
+    <div class="image-container">
+        <div id="inputPreview"></div>
+        <div id="appendPreview"></div>
+    </div>
+    <div id="response"></div>
+
+    <script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
+    <script>
+       function submitImages() {
+            let inputImage = document.getElementById('inputImage').files[0];
+            let appendImage = document.getElementById('appendImage').files[0];
+            let objectName = document.getElementById('objectName').value;
+
+            // Check if both input and append images are selected
+            if (inputImage && appendImage) {
+                var formData = new FormData();
+                formData.append('input_image', inputImage);
+                formData.append('append_image', appendImage);
+
+                // Append objectName if user added any value
+                if (objectName) {
+                    formData.append('objectName', objectName);
+                }
+
+                fetch('/process_images', {
+                    method: 'POST',
+                    body: formData
+                })
+                .then(response => {
+                    if (!response.ok) {
+                        throw new Error('Failed to process images');
+                    }
+                    return response.json();
+                })
+                .then(data => {
+                    if (data.output_base64) {
+                        document.getElementById('response').innerHTML = "<h2>Final Image:</h2><div id='responseImg'><img src='data:image/png;base64," + data.output_base64 + "'/></div>";
+                    } else if (data.message) {
+                        alert(data.message);
+                    } else {
+                        alert('Unknown error occurred');
+                    }
+                })
+                .catch(error => {
+                    alert('Error: ' + error.message);
+                });
+            } else {
+                alert("Please select both input and append images.");
+            }
+        }
+
+        function showImagePreview(inputId, previewId) {
+            var input = document.getElementById(inputId);
+            if (input.files && input.files[0]) {
+                var reader = new FileReader();
+                reader.onload = function(e) {
+                    $('#' + previewId).html('<img src="' + e.target.result + '" alt="Image Preview">');
+                }
+                reader.readAsDataURL(input.files[0]);
+            }
+        }
+    </script>
+</body>
+</html>
diff --git a/utils/logger.py b/utils/logger.py
new file mode 100644
index 0000000000000000000000000000000000000000..3a92be661c3da689450b86fb0861542c2dc92a96
--- /dev/null
+++ b/utils/logger.py
@@ -0,0 +1,37 @@
+import os
+import sys
+import datetime
+import logging
+
+
+def date_uid():
+    """Generate a unique id based on date.
+
+    Returns:
+        str: Return uid string, e.g. '20171122171307111552'.
+
+    """
+    return str(datetime.datetime.now()).replace('-', '') \
+        .replace(' ', '').replace(':', '').replace('.', '')
+
+
+def get_logger(checkpoint_path=None):
+    """
+    Get the root logger
+    :param checkpoint_path: only specify this when the first time call it
+    :return: the root logger
+    """
+    if checkpoint_path:
+        logger = logging.getLogger()
+        formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
+        stream_hdlr = logging.StreamHandler(sys.stdout)
+        log_filename = date_uid()
+        file_hdlr = logging.FileHandler(os.path.join(checkpoint_path, log_filename + '.log'))
+        stream_hdlr.setFormatter(formatter)
+        file_hdlr.setFormatter(formatter)
+        logger.addHandler(stream_hdlr)
+        logger.addHandler(file_hdlr)
+        logger.setLevel(logging.INFO)
+    else:
+        logger = logging.getLogger()
+    return logger