Spaces:
Runtime error
Runtime error
nikunjkdtechnoland
commited on
Commit
•
e9d702e
1
Parent(s):
d06defe
add bg remover
Browse files- app.py +1 -1
- bgremove/bg_remove_cnn.py +454 -0
- bgremover.py +53 -0
- only_gradio_server.py +8 -27
- requirements.txt +1 -2
app.py
CHANGED
@@ -10,7 +10,7 @@ options_list = list(object_names.values())
|
|
10 |
# Create Gradio interface
|
11 |
iface = gr.Interface(fn=process_images,
|
12 |
inputs=[gr.Image(type='filepath', label='Main Image where object identify', width="60%", height="60%"),
|
13 |
-
gr.Image(type='filepath', label='Object Image which placed on Main Image
|
14 |
gr.Dropdown(options_list, label='Replace Object Name (Default = chair)')],
|
15 |
outputs=gr.Image(type='numpy', label='Final Result', width="60%", height="60%"),
|
16 |
title="AI Based Image Processing",
|
|
|
10 |
# Create Gradio interface
|
11 |
iface = gr.Interface(fn=process_images,
|
12 |
inputs=[gr.Image(type='filepath', label='Main Image where object identify', width="60%", height="60%"),
|
13 |
+
gr.Image(type='filepath', label='Object Image which placed on Main Image', image_mode="RGBA", width="60%", height="60%"),
|
14 |
gr.Dropdown(options_list, label='Replace Object Name (Default = chair)')],
|
15 |
outputs=gr.Image(type='numpy', label='Final Result', width="60%", height="60%"),
|
16 |
title="AI Based Image Processing",
|
bgremove/bg_remove_cnn.py
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
class REBNCONV(nn.Module):
|
6 |
+
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
|
7 |
+
super(REBNCONV,self).__init__()
|
8 |
+
|
9 |
+
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate,stride=stride)
|
10 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
11 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
12 |
+
|
13 |
+
def forward(self,x):
|
14 |
+
|
15 |
+
hx = x
|
16 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
17 |
+
|
18 |
+
return xout
|
19 |
+
|
20 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
21 |
+
def _upsample_like(src,tar):
|
22 |
+
|
23 |
+
src = F.interpolate(src,size=tar.shape[2:],mode='bilinear')
|
24 |
+
|
25 |
+
return src
|
26 |
+
|
27 |
+
|
28 |
+
### RSU-7 ###
|
29 |
+
class RSU7(nn.Module):
|
30 |
+
|
31 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
32 |
+
super(RSU7,self).__init__()
|
33 |
+
|
34 |
+
self.in_ch = in_ch
|
35 |
+
self.mid_ch = mid_ch
|
36 |
+
self.out_ch = out_ch
|
37 |
+
|
38 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) ## 1 -> 1/2
|
39 |
+
|
40 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
41 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
42 |
+
|
43 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
44 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
45 |
+
|
46 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
47 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
48 |
+
|
49 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
50 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
51 |
+
|
52 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
53 |
+
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
54 |
+
|
55 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
56 |
+
|
57 |
+
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
58 |
+
|
59 |
+
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
60 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
61 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
62 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
63 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
64 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
65 |
+
|
66 |
+
def forward(self,x):
|
67 |
+
b, c, h, w = x.shape
|
68 |
+
|
69 |
+
hx = x
|
70 |
+
hxin = self.rebnconvin(hx)
|
71 |
+
|
72 |
+
hx1 = self.rebnconv1(hxin)
|
73 |
+
hx = self.pool1(hx1)
|
74 |
+
|
75 |
+
hx2 = self.rebnconv2(hx)
|
76 |
+
hx = self.pool2(hx2)
|
77 |
+
|
78 |
+
hx3 = self.rebnconv3(hx)
|
79 |
+
hx = self.pool3(hx3)
|
80 |
+
|
81 |
+
hx4 = self.rebnconv4(hx)
|
82 |
+
hx = self.pool4(hx4)
|
83 |
+
|
84 |
+
hx5 = self.rebnconv5(hx)
|
85 |
+
hx = self.pool5(hx5)
|
86 |
+
|
87 |
+
hx6 = self.rebnconv6(hx)
|
88 |
+
|
89 |
+
hx7 = self.rebnconv7(hx6)
|
90 |
+
|
91 |
+
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
92 |
+
hx6dup = _upsample_like(hx6d,hx5)
|
93 |
+
|
94 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
95 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
96 |
+
|
97 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
98 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
99 |
+
|
100 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
101 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
102 |
+
|
103 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
104 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
105 |
+
|
106 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
107 |
+
|
108 |
+
return hx1d + hxin
|
109 |
+
|
110 |
+
|
111 |
+
### RSU-6 ###
|
112 |
+
class RSU6(nn.Module):
|
113 |
+
|
114 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
115 |
+
super(RSU6,self).__init__()
|
116 |
+
|
117 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
118 |
+
|
119 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
120 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
121 |
+
|
122 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
123 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
124 |
+
|
125 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
126 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
127 |
+
|
128 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
129 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
130 |
+
|
131 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
132 |
+
|
133 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
134 |
+
|
135 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
136 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
137 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
138 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
139 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
140 |
+
|
141 |
+
def forward(self,x):
|
142 |
+
|
143 |
+
hx = x
|
144 |
+
|
145 |
+
hxin = self.rebnconvin(hx)
|
146 |
+
|
147 |
+
hx1 = self.rebnconv1(hxin)
|
148 |
+
hx = self.pool1(hx1)
|
149 |
+
|
150 |
+
hx2 = self.rebnconv2(hx)
|
151 |
+
hx = self.pool2(hx2)
|
152 |
+
|
153 |
+
hx3 = self.rebnconv3(hx)
|
154 |
+
hx = self.pool3(hx3)
|
155 |
+
|
156 |
+
hx4 = self.rebnconv4(hx)
|
157 |
+
hx = self.pool4(hx4)
|
158 |
+
|
159 |
+
hx5 = self.rebnconv5(hx)
|
160 |
+
|
161 |
+
hx6 = self.rebnconv6(hx5)
|
162 |
+
|
163 |
+
|
164 |
+
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
165 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
166 |
+
|
167 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
168 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
169 |
+
|
170 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
171 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
172 |
+
|
173 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
174 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
175 |
+
|
176 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
177 |
+
|
178 |
+
return hx1d + hxin
|
179 |
+
|
180 |
+
### RSU-5 ###
|
181 |
+
class RSU5(nn.Module):
|
182 |
+
|
183 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
184 |
+
super(RSU5,self).__init__()
|
185 |
+
|
186 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
187 |
+
|
188 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
189 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
190 |
+
|
191 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
192 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
193 |
+
|
194 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
195 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
196 |
+
|
197 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
198 |
+
|
199 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
200 |
+
|
201 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
202 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
203 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
204 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
205 |
+
|
206 |
+
def forward(self,x):
|
207 |
+
|
208 |
+
hx = x
|
209 |
+
|
210 |
+
hxin = self.rebnconvin(hx)
|
211 |
+
|
212 |
+
hx1 = self.rebnconv1(hxin)
|
213 |
+
hx = self.pool1(hx1)
|
214 |
+
|
215 |
+
hx2 = self.rebnconv2(hx)
|
216 |
+
hx = self.pool2(hx2)
|
217 |
+
|
218 |
+
hx3 = self.rebnconv3(hx)
|
219 |
+
hx = self.pool3(hx3)
|
220 |
+
|
221 |
+
hx4 = self.rebnconv4(hx)
|
222 |
+
|
223 |
+
hx5 = self.rebnconv5(hx4)
|
224 |
+
|
225 |
+
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
226 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
227 |
+
|
228 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
229 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
230 |
+
|
231 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
232 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
233 |
+
|
234 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
235 |
+
|
236 |
+
return hx1d + hxin
|
237 |
+
|
238 |
+
### RSU-4 ###
|
239 |
+
class RSU4(nn.Module):
|
240 |
+
|
241 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
242 |
+
super(RSU4,self).__init__()
|
243 |
+
|
244 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
245 |
+
|
246 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
247 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
248 |
+
|
249 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
250 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
251 |
+
|
252 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
253 |
+
|
254 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
255 |
+
|
256 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
257 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
258 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
259 |
+
|
260 |
+
def forward(self,x):
|
261 |
+
|
262 |
+
hx = x
|
263 |
+
|
264 |
+
hxin = self.rebnconvin(hx)
|
265 |
+
|
266 |
+
hx1 = self.rebnconv1(hxin)
|
267 |
+
hx = self.pool1(hx1)
|
268 |
+
|
269 |
+
hx2 = self.rebnconv2(hx)
|
270 |
+
hx = self.pool2(hx2)
|
271 |
+
|
272 |
+
hx3 = self.rebnconv3(hx)
|
273 |
+
|
274 |
+
hx4 = self.rebnconv4(hx3)
|
275 |
+
|
276 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
277 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
278 |
+
|
279 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
280 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
281 |
+
|
282 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
283 |
+
|
284 |
+
return hx1d + hxin
|
285 |
+
|
286 |
+
### RSU-4F ###
|
287 |
+
class RSU4F(nn.Module):
|
288 |
+
|
289 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
290 |
+
super(RSU4F,self).__init__()
|
291 |
+
|
292 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
293 |
+
|
294 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
295 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
296 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
297 |
+
|
298 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
299 |
+
|
300 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
301 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
302 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
303 |
+
|
304 |
+
def forward(self,x):
|
305 |
+
|
306 |
+
hx = x
|
307 |
+
|
308 |
+
hxin = self.rebnconvin(hx)
|
309 |
+
|
310 |
+
hx1 = self.rebnconv1(hxin)
|
311 |
+
hx2 = self.rebnconv2(hx1)
|
312 |
+
hx3 = self.rebnconv3(hx2)
|
313 |
+
|
314 |
+
hx4 = self.rebnconv4(hx3)
|
315 |
+
|
316 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
317 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
318 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
319 |
+
|
320 |
+
return hx1d + hxin
|
321 |
+
|
322 |
+
|
323 |
+
class myrebnconv(nn.Module):
|
324 |
+
def __init__(self, in_ch=3,
|
325 |
+
out_ch=1,
|
326 |
+
kernel_size=3,
|
327 |
+
stride=1,
|
328 |
+
padding=1,
|
329 |
+
dilation=1,
|
330 |
+
groups=1):
|
331 |
+
super(myrebnconv,self).__init__()
|
332 |
+
|
333 |
+
self.conv = nn.Conv2d(in_ch,
|
334 |
+
out_ch,
|
335 |
+
kernel_size=kernel_size,
|
336 |
+
stride=stride,
|
337 |
+
padding=padding,
|
338 |
+
dilation=dilation,
|
339 |
+
groups=groups)
|
340 |
+
self.bn = nn.BatchNorm2d(out_ch)
|
341 |
+
self.rl = nn.ReLU(inplace=True)
|
342 |
+
|
343 |
+
def forward(self,x):
|
344 |
+
return self.rl(self.bn(self.conv(x)))
|
345 |
+
|
346 |
+
|
347 |
+
class BriaRMBG(nn.Module):
|
348 |
+
|
349 |
+
def __init__(self,in_ch=3,out_ch=1):
|
350 |
+
super(BriaRMBG,self).__init__()
|
351 |
+
|
352 |
+
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
353 |
+
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
354 |
+
|
355 |
+
self.stage1 = RSU7(64,32,64)
|
356 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
357 |
+
|
358 |
+
self.stage2 = RSU6(64,32,128)
|
359 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
360 |
+
|
361 |
+
self.stage3 = RSU5(128,64,256)
|
362 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
363 |
+
|
364 |
+
self.stage4 = RSU4(256,128,512)
|
365 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
366 |
+
|
367 |
+
self.stage5 = RSU4F(512,256,512)
|
368 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
369 |
+
|
370 |
+
self.stage6 = RSU4F(512,256,512)
|
371 |
+
|
372 |
+
# decoder
|
373 |
+
self.stage5d = RSU4F(1024,256,512)
|
374 |
+
self.stage4d = RSU4(1024,128,256)
|
375 |
+
self.stage3d = RSU5(512,64,128)
|
376 |
+
self.stage2d = RSU6(256,32,64)
|
377 |
+
self.stage1d = RSU7(128,16,64)
|
378 |
+
|
379 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
380 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
381 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
382 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
383 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
384 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
385 |
+
|
386 |
+
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
387 |
+
|
388 |
+
def forward(self,x):
|
389 |
+
|
390 |
+
hx = x
|
391 |
+
|
392 |
+
hxin = self.conv_in(hx)
|
393 |
+
#hx = self.pool_in(hxin)
|
394 |
+
|
395 |
+
#stage 1
|
396 |
+
hx1 = self.stage1(hxin)
|
397 |
+
hx = self.pool12(hx1)
|
398 |
+
|
399 |
+
#stage 2
|
400 |
+
hx2 = self.stage2(hx)
|
401 |
+
hx = self.pool23(hx2)
|
402 |
+
|
403 |
+
#stage 3
|
404 |
+
hx3 = self.stage3(hx)
|
405 |
+
hx = self.pool34(hx3)
|
406 |
+
|
407 |
+
#stage 4
|
408 |
+
hx4 = self.stage4(hx)
|
409 |
+
hx = self.pool45(hx4)
|
410 |
+
|
411 |
+
#stage 5
|
412 |
+
hx5 = self.stage5(hx)
|
413 |
+
hx = self.pool56(hx5)
|
414 |
+
|
415 |
+
#stage 6
|
416 |
+
hx6 = self.stage6(hx)
|
417 |
+
hx6up = _upsample_like(hx6,hx5)
|
418 |
+
|
419 |
+
#-------------------- decoder --------------------
|
420 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
421 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
422 |
+
|
423 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
424 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
425 |
+
|
426 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
427 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
428 |
+
|
429 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
430 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
431 |
+
|
432 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
433 |
+
|
434 |
+
|
435 |
+
#side output
|
436 |
+
d1 = self.side1(hx1d)
|
437 |
+
d1 = _upsample_like(d1,x)
|
438 |
+
|
439 |
+
d2 = self.side2(hx2d)
|
440 |
+
d2 = _upsample_like(d2,x)
|
441 |
+
|
442 |
+
d3 = self.side3(hx3d)
|
443 |
+
d3 = _upsample_like(d3,x)
|
444 |
+
|
445 |
+
d4 = self.side4(hx4d)
|
446 |
+
d4 = _upsample_like(d4,x)
|
447 |
+
|
448 |
+
d5 = self.side5(hx5d)
|
449 |
+
d5 = _upsample_like(d5,x)
|
450 |
+
|
451 |
+
d6 = self.side6(hx6)
|
452 |
+
d6 = _upsample_like(d6,x)
|
453 |
+
|
454 |
+
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)],[hx1d,hx2d,hx3d,hx4d,hx5d,hx6]
|
bgremover.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torchvision.transforms.functional import normalize
|
5 |
+
from bgremove.bg_remove_cnn import BriaRMBG
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
net = BriaRMBG()
|
9 |
+
model_path = "./pretrained-model/bgremove.pth"
|
10 |
+
|
11 |
+
if torch.cuda.is_available():
|
12 |
+
net.load_state_dict(torch.load(model_path))
|
13 |
+
net = net.cuda()
|
14 |
+
else:
|
15 |
+
net.load_state_dict(torch.load(model_path, map_location="cpu"))
|
16 |
+
net.eval()
|
17 |
+
|
18 |
+
|
19 |
+
def resize_image(image):
|
20 |
+
image = image.convert('RGB')
|
21 |
+
model_input_size = (1024, 1024)
|
22 |
+
image = image.resize(model_input_size, Image.BILINEAR)
|
23 |
+
return image
|
24 |
+
|
25 |
+
|
26 |
+
def process(image):
|
27 |
+
# prepare input
|
28 |
+
orig_image = Image.fromarray(image)
|
29 |
+
w, h = orig_im_size = orig_image.size
|
30 |
+
image = resize_image(orig_image)
|
31 |
+
im_np = np.array(image)
|
32 |
+
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
|
33 |
+
im_tensor = torch.unsqueeze(im_tensor, 0)
|
34 |
+
im_tensor = torch.divide(im_tensor, 255.0)
|
35 |
+
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
|
36 |
+
if torch.cuda.is_available():
|
37 |
+
im_tensor = im_tensor.cuda()
|
38 |
+
|
39 |
+
# inference
|
40 |
+
result = net(im_tensor)
|
41 |
+
# post process
|
42 |
+
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0)
|
43 |
+
ma = torch.max(result)
|
44 |
+
mi = torch.min(result)
|
45 |
+
result = (result - mi) / (ma - mi)
|
46 |
+
# image to pil
|
47 |
+
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
|
48 |
+
pil_im = Image.fromarray(np.squeeze(im_array))
|
49 |
+
# paste the mask on the original image
|
50 |
+
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
|
51 |
+
new_im.paste(orig_image, mask=pil_im)
|
52 |
+
# new_orig_image = orig_image.convert('RGBA')
|
53 |
+
return new_im
|
only_gradio_server.py
CHANGED
@@ -1,19 +1,12 @@
|
|
1 |
import os
|
2 |
-
import base64
|
3 |
import io
|
4 |
-
import uuid
|
5 |
from ultralytics import YOLO
|
6 |
import cv2
|
7 |
-
import torch
|
8 |
import numpy as np
|
9 |
from PIL import Image
|
10 |
-
from torchvision import transforms
|
11 |
-
import imageio.v2 as imageio
|
12 |
-
from utils.tools import get_config
|
13 |
-
import torch.nn.functional as F
|
14 |
from iopaint.single_processing import batch_inpaint_cv2
|
15 |
-
from pathlib import Path
|
16 |
import gradio as gr
|
|
|
17 |
|
18 |
# set current working directory cache instead of default
|
19 |
os.environ["TORCH_HOME"] = "./pretrained-model"
|
@@ -60,18 +53,6 @@ def process_images(input_image, append_image, default_class="chair"):
|
|
60 |
if not append_image:
|
61 |
raise gr.Error("Please upload an object image.")
|
62 |
|
63 |
-
# Check if the append_image is a PNG file with RGBA mode
|
64 |
-
try:
|
65 |
-
with Image.open(append_image) as img:
|
66 |
-
if img.format != 'PNG' or img.mode != 'RGBA':
|
67 |
-
raise gr.Error("Please upload a valid PNG file with RGBA mode for the object image.")
|
68 |
-
except Exception as e:
|
69 |
-
raise gr.Error("Failed to validate object image: Upload new image")
|
70 |
-
|
71 |
-
# Static paths
|
72 |
-
config_path = Path('configs/config.yaml')
|
73 |
-
model_path = Path('pretrained-model/torch_model.p')
|
74 |
-
|
75 |
# Resize input image and get base64 data of resized image
|
76 |
img = resize_image(input_image)
|
77 |
|
@@ -121,7 +102,7 @@ def process_images(input_image, append_image, default_class="chair"):
|
|
121 |
resized_mask = cv2.resize(dilated_mask, (img.shape[1], img.shape[0]))
|
122 |
|
123 |
# call repainting and merge function
|
124 |
-
output_numpy = repaitingAndMerge(append_image,
|
125 |
# Return the output numpy image in the API response
|
126 |
return output_numpy
|
127 |
|
@@ -129,10 +110,7 @@ def process_images(input_image, append_image, default_class="chair"):
|
|
129 |
if not class_found:
|
130 |
raise gr.Error(f'{default_class} object not found in the image')
|
131 |
|
132 |
-
def repaitingAndMerge(append_image_path,
|
133 |
-
config = get_config(config_path)
|
134 |
-
device = torch.device("cpu")
|
135 |
-
|
136 |
# lama inpainting start
|
137 |
print("lama inpainting start")
|
138 |
inpaint_result_np = batch_inpaint_cv2('lama', 'cpu', input_base, mask_base)
|
@@ -148,14 +126,17 @@ def repaitingAndMerge(append_image_path, model_path, config_path, width, height,
|
|
148 |
resized_image = cv2.resize(append_image, (width, height), interpolation=cv2.INTER_AREA)
|
149 |
# Convert the resized image to RGBA format (assuming it's in BGRA format)
|
150 |
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGRA2RGBA)
|
|
|
151 |
# Create a PIL Image from the resized image with transparent background
|
152 |
-
append_image_pil = Image.fromarray(resized_image)
|
|
|
|
|
|
|
153 |
|
154 |
# Paste the append image onto the final image
|
155 |
final_image.paste(append_image_pil, (xposition, yposition), append_image_pil)
|
156 |
# Save the resulting image
|
157 |
print("merge end")
|
158 |
-
|
159 |
# Convert the final image to base64
|
160 |
with io.BytesIO() as output_buffer:
|
161 |
final_image.save(output_buffer, format='PNG')
|
|
|
1 |
import os
|
|
|
2 |
import io
|
|
|
3 |
from ultralytics import YOLO
|
4 |
import cv2
|
|
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
7 |
from iopaint.single_processing import batch_inpaint_cv2
|
|
|
8 |
import gradio as gr
|
9 |
+
from bgremover import process
|
10 |
|
11 |
# set current working directory cache instead of default
|
12 |
os.environ["TORCH_HOME"] = "./pretrained-model"
|
|
|
53 |
if not append_image:
|
54 |
raise gr.Error("Please upload an object image.")
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# Resize input image and get base64 data of resized image
|
57 |
img = resize_image(input_image)
|
58 |
|
|
|
102 |
resized_mask = cv2.resize(dilated_mask, (img.shape[1], img.shape[0]))
|
103 |
|
104 |
# call repainting and merge function
|
105 |
+
output_numpy = repaitingAndMerge(append_image,width, height, x_point, y_point, img, resized_mask)
|
106 |
# Return the output numpy image in the API response
|
107 |
return output_numpy
|
108 |
|
|
|
110 |
if not class_found:
|
111 |
raise gr.Error(f'{default_class} object not found in the image')
|
112 |
|
113 |
+
def repaitingAndMerge(append_image_path, width, height, xposition, yposition, input_base, mask_base):
|
|
|
|
|
|
|
114 |
# lama inpainting start
|
115 |
print("lama inpainting start")
|
116 |
inpaint_result_np = batch_inpaint_cv2('lama', 'cpu', input_base, mask_base)
|
|
|
126 |
resized_image = cv2.resize(append_image, (width, height), interpolation=cv2.INTER_AREA)
|
127 |
# Convert the resized image to RGBA format (assuming it's in BGRA format)
|
128 |
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGRA2RGBA)
|
129 |
+
|
130 |
# Create a PIL Image from the resized image with transparent background
|
131 |
+
#append_image_pil = Image.fromarray(resized_image)
|
132 |
+
|
133 |
+
# remove the bg from image
|
134 |
+
append_image_pil = process(resized_image)
|
135 |
|
136 |
# Paste the append image onto the final image
|
137 |
final_image.paste(append_image_pil, (xposition, yposition), append_image_pil)
|
138 |
# Save the resulting image
|
139 |
print("merge end")
|
|
|
140 |
# Convert the final image to base64
|
141 |
with io.BytesIO() as output_buffer:
|
142 |
final_image.save(output_buffer, format='PNG')
|
requirements.txt
CHANGED
@@ -23,5 +23,4 @@ typer-config==1.4.0
|
|
23 |
Pillow==9.5.0
|
24 |
ultralytics
|
25 |
flask
|
26 |
-
flask_cors
|
27 |
-
trainer
|
|
|
23 |
Pillow==9.5.0
|
24 |
ultralytics
|
25 |
flask
|
26 |
+
flask_cors
|
|