File size: 11,196 Bytes
c818471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e151b1f
c818471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# -*- coding: utf-8 -*-
"""

Created on Tue Jan 12 08:28:35 2021



@author: rejid4996

"""

# packages
import os
import re
import time
import base64
import pickle
import numpy as np
import pandas as pd
import streamlit as st
from io import BytesIO
import preprocessor as p
from textblob.classifiers import NaiveBayesClassifier

# custum function to clean the dataset (combining tweet_preprocessor and reguar expression)
def clean_tweets(df):
    #set up punctuations we want to be replaced
    REPLACE_NO_SPACE = re.compile("(\.)|(\;)|(\:)|(\!)|(\')|(\?)|(\,)|(\")|(\|)|(\()|(\))|(\[)|(\])|(\%)|(\$)|(\>)|(\<)|(\{)|(\})")
    REPLACE_WITH_SPACE = re.compile("(<br\s/><br\s/?)|(-)|(/)|(:).")
    tempArr = []
    for line in df:
        # send to tweet_processor
        tmpL = p.clean(line)
        # remove puctuation
        tmpL = REPLACE_NO_SPACE.sub("", tmpL.lower()) # convert all tweets to lower cases
        tmpL = REPLACE_WITH_SPACE.sub(" ", tmpL)
        tempArr.append(tmpL)
    return tempArr

def to_excel(df):
    output = BytesIO()
    writer = pd.ExcelWriter(output, engine='xlsxwriter')
    df.to_excel(writer, sheet_name='Sheet1')
    writer.save()
    processed_data = output.getvalue()
    return processed_data

def get_table_download_link(df):
            """Generates a link allowing the data in a given panda dataframe to be downloaded

            in:  dataframe

            out: href string

            """
            val = to_excel(df)
            b64 = base64.b64encode(val)  # val looks like b'...'
            return f'<a href="data:application/octet-stream;base64,{b64.decode()}" download="classified_data.xlsx">Download file</a>' # decode b'abc' => abc

def download_model(model):
    output_model = pickle.dumps(model)
    b64 = base64.b64encode(output_model).decode()
    href = f'<a href="data:file/output_model;base64,{b64}" download="myClassifier.pkl">Download Model .pkl File</a>'
    st.markdown(href, unsafe_allow_html=True)

def main():
    """NLP App with Streamlit"""
    
    from PIL import Image
    
    wallpaper = Image.open('file.jpg')
    wallpaper = wallpaper.resize((700,350))
        
    st.sidebar.title("Text Classification App 1.0")
    st.sidebar.success("Please reach out to https://www.linkedin.com/in/deepak-john-reji/ for more queries")
    st.sidebar.subheader("Classifier using Textblob ")
    
    st.info("For more contents subscribe to my Youtube Channel https://www.youtube.com/channel/UCgOwsx5injeaB_TKGsVD5GQ")
    st.image(wallpaper)
    
    options = ("Train the model", "Test the model", "Predict for a new data")
    a = st.sidebar.empty()
    value = a.radio("what do you wanna do", options, 0)
    
    if value == "Train the model":
        
        uploaded_file = st.file_uploader("*Upload your file, make sure you have a column for text that has to be classified and the label", type="xlsx")
        
        if uploaded_file:
    
            df = pd.read_excel(uploaded_file)
            
            option1 = st.sidebar.selectbox(
                    'Select the text column',
                    tuple(df.columns.to_list()))
            
            option2 = st.sidebar.selectbox(
                    'Select the label column',
                    tuple(df.columns.to_list()))
            
            # clean training data
            df[option1] = clean_tweets(df[option1])
            
            # Enter the label names 
            label1 = st.sidebar.text_input("Enter the label for '0' value") 
            label2 = st.sidebar.text_input("Enter the label for '1' value") 
            
            # replace value with pos and neg
            df[option2]  = df[option2].map({0:label1, 1:label2})
            
            gcr_config = st.sidebar.slider(label="choose the training size, longer the size longer the training time",
                               min_value=100,
                               max_value=10000,
                               step=10)
            
            #subsetting based on classes
            df1 = df[df[option2] == label1][0:int(gcr_config/2)]
            df2 = df[df[option2] == label2][0:int(gcr_config/2)]
            
            df_new = pd.concat([df1, df2]).reset_index(drop=True)
            
            
            # convert in the format
            training_list = []
            for i in df_new.index:
                value = (df_new[option1][i], df_new[option2][i])
                training_list.append(value)
            
            # run classification
            run_button = st.sidebar.button(label='Start Training')
            
            if run_button:
            
                # Train using Naive Bayes
                start = time.time()  # start time
                cl = NaiveBayesClassifier(training_list[0:gcr_config])
                
                st.success("Congratulations!!! Model trained successfully with an accuracy of "+str(cl.accuracy(training_list) * 100) + str("%"))
                st.write("Total Time taken for Training :" + str((time.time()-start)/60) + " minutes")
                              
                # download the model
                download_model(cl)
    
    # testing the model
    if value == "Test the model":  
        uploaded_file = st.file_uploader("*Upload your model file, make sure its in the right format (currently pickle file)", type="pkl")
        if uploaded_file:     
            model = pickle.load(uploaded_file)
            st.success("Congratulations!!! Model upload successfull")
            
            if model:
                value1 = ""
                test_sentence = st.text_input("Enter the testing sentence") 
                
                #predict_button = st.button(label='Predict')
                
                if test_sentence:
                    st.info("Model Prediction is : " + model.classify(test_sentence))
                    
                    "\n"
                    st.write("### 🎲 Help me train the model better. How is the prediction?")
                    "\n"
                    correct = st.checkbox("Correct")
                    wrong = st.checkbox("Incorrect")
                    
                    if correct:
                        st.success("Great!!! I am happy for you")
                        st.write("If you would like please try out for more examples")
                        
                    if wrong:
                        st.write("### 🎲 Dont worry!!! Lets add this new data to the model and retrain. ")
                        label = st.text_input("Could you write the actual label, please note the label name should be the same while you trained") 
                        #retrain_button = st.button(label='Retrain')
                        if label:
                            new_data = [(test_sentence, label)]
                            model.update(new_data)
                            
                            st.write("### 🎲 Lets classify and see whether model had learned from this example ")
                            
                            st.write("Sentence : " + test_sentence)
                            st.info("New Model Prediction is : " + model.classify(test_sentence))
                            
                            sec_wrong3 = st.checkbox("It's Correct")
                            sec_wrong1 = st.checkbox("Still Incorrect")
                            sec_wrong2 = st.checkbox("I will go ahead and change the data in excel and retrain the model")
                            
                            
                            if sec_wrong1:
                                st.write("### 🎲 Lets try training with some sentences of this sort")
                                new_sentence = st.text_input("Enter the training sentence") 
                                new_label = st.text_input("Enter the training label") 
                                
                                st.write("Lets try one last time ")
                                retrain_button1 = st.button(label='Retrain again!')
                                                                
                                if retrain_button1:
                                    new_data1 = [(new_sentence, new_label)]
                                    model.update(new_data1)
                                    
                                    st.write("Sentence : " + new_sentence)
                                    st.info("New Model Prediction is : " + model.classify(new_sentence))
                                    
                                    # download the model
                                    download_model(model)
                                    
                            if sec_wrong2:
                                st.info("Great!!! Fingers Crossed")
                                st.write("### 🎲 Please return to your excel file and add more sentences and Train the model again")
                                                            
                            if sec_wrong3:
                                st.info("Wow!!! Awesome")
                                st.write("Now lets download the updated model")
                                # download the model
                                download_model(model)
    
    # predicting for new data 
    if value == "Predict for a new data":  
        uploaded_file3 = st.file_uploader("*Upload your model file, make sure its in the right format (currently pickle file)", type="pkl")
        if uploaded_file3:     
            model1 = pickle.load(uploaded_file3)
            st.success("Congratulations!!! Model uploaded successfully")
            
            uploaded_file1 = st.file_uploader("*Upload your new data which you have to predict", type="xlsx")
            if uploaded_file1:     
                st.success("Congratulations!!! Data uploaded successfully")
                
                df_valid = pd.read_excel(uploaded_file1)
                
                option3 = st.selectbox(
                    'Select the text column which needs to be predicted',
                    tuple(df_valid.columns.to_list()))
                
                predict_button1 = st.button(label='Predict for new data')
                
                if predict_button1:
                    start1 = time.time()  # start time
                    df_valid['predicted'] = df_valid[option3].apply(lambda tweet: model1.classify(tweet))
                    
                    st.write("### 🎲 Prediction Successfull !!!")
                    
                    st.write("Total No. of sentences: "+ str(len(df_valid)))
                    st.write("Total Time taken for Prediction :" + str((time.time()-start1)/60) + " minutes")
                    
                    st.markdown(get_table_download_link(df_valid), unsafe_allow_html=True)
        
if __name__ == "__main__":
    main()