drkareemkamal commited on
Commit
a505b98
1 Parent(s): 4d82337

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +126 -0
app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_core.prompts import PromptTemplate
2
+ import os
3
+ from langchain_community.embeddings import HuggingFaceBgeEmbeddings
4
+ from langchain_community.vectorstores import FAISS
5
+ from langchain_community.llms.ctransformers import CTransformers
6
+ from langchain.chains.retrieval_qa.base import RetrievalQA
7
+ import streamlit as st
8
+ import fitz # PyMuPDF
9
+ from PIL import Image
10
+ import io
11
+
12
+ DB_FAISS_PATH = 'vectorstores/'
13
+ #pdf_path = 'data/Harrisons_Internal_Medicine_2022,_21th_Edition_Vol_1_&_Vol_2_.pdf'
14
+
15
+
16
+ custom_prompt_template = '''use the following pieces of information to answer the user's questions.
17
+ If you don't know the answer, please just say that don't know the answer, don't try to make up an answer.
18
+ Context : {context}
19
+ Question : {question}
20
+ only return the helpful answer below and nothing else.
21
+ '''
22
+
23
+
24
+ def set_custom_prompt():
25
+ """
26
+ Prompt template for QA retrieval for vector stores
27
+ """
28
+ prompt = PromptTemplate(template=custom_prompt_template,
29
+ input_variables=['context', 'question'])
30
+ return prompt
31
+
32
+ def load_llm():
33
+ llm = CTransformers(
34
+ #model='epfl-llm/meditron-7b',
35
+ model = 'TheBloke/Llama-2-7B-Chat-GGML',
36
+ model_type='llma',
37
+ max_new_token=512,
38
+ temperature=0.5
39
+ )
40
+ return llm
41
+
42
+ # def load_embeddings():
43
+ # embeddings = HuggingFaceBgeEmbeddings(model_name='NeuML/pubmedbert-base-embeddings',
44
+ # model_kwargs={'device': 'cpu'})
45
+ # return embeddings
46
+
47
+ # def load_faiss_index(embeddings):
48
+ # db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
49
+ # return db
50
+
51
+ def retrieval_qa_chain(llm, prompt, db):
52
+ qa_chain = RetrievalQA.from_chain_type(
53
+ llm=llm,
54
+ chain_type='stuff',
55
+ retriever=db.as_retriever(search_kwargs={'k': 2}),
56
+ return_source_documents=True,
57
+ chain_type_kwargs={'prompt': prompt}
58
+ )
59
+ return qa_chain
60
+
61
+ def qa_bot():
62
+ embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2',
63
+ model_kwargs = {'device':'cpu'})
64
+
65
+
66
+ db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
67
+ llm = load_llm()
68
+ qa_prompt = set_custom_prompt()
69
+ qa = retrieval_qa_chain(llm, qa_prompt, db)
70
+ return qa
71
+
72
+ def final_result(query):
73
+ qa_result = qa_bot()
74
+ response = qa_result({'query': query})
75
+ return response
76
+
77
+
78
+ def get_pdf_page_as_image(pdf_path, page_number):
79
+ document = fitz.open(pdf_path)
80
+ page = document.load_page(page_number)
81
+ pix = page.get_pixmap()
82
+ img = Image.open(io.BytesIO(pix.tobytes()))
83
+ return img
84
+
85
+ # # Initialize the bot
86
+ # bot = qa_bot()
87
+
88
+ # Streamlit webpage title
89
+ st.title('Medical Chatbot')
90
+
91
+ # User input
92
+ user_query = st.text_input("Please enter your question:")
93
+
94
+ # Button to get answer
95
+ if st.button('Get Answer'):
96
+ if user_query:
97
+ # Call the function from your chatbot script
98
+ response = final_result(user_query)
99
+ if response:
100
+ # Displaying the response
101
+ st.write("### Answer")
102
+ st.write(response['result'])
103
+
104
+ # Displaying source document details if available
105
+ if 'source_documents' in response:
106
+ st.write("### Source Document Information")
107
+ for doc in response['source_documents']:
108
+ # Retrieve and format page content by replacing '\n' with new line
109
+ formatted_content = doc.page_content.replace("\\n", "\n")
110
+ st.write("#### Document Content")
111
+ st.text_area(label="Page Content", value=formatted_content, height=300)
112
+
113
+ # Retrieve source and page from metadata
114
+ source = doc.metadata['source']
115
+ page = doc.metadata['page']
116
+ st.write(f"Source: {source}")
117
+ st.write(f"Page Number: {page+1}")
118
+
119
+ # Display the PDF page as an image
120
+ # pdf_page_image = get_pdf_page_as_image(pdf_path, page)
121
+ # st.image(pdf_page_image, caption=f"Page {page+1} from {source}")
122
+
123
+ else:
124
+ st.write("Sorry, I couldn't find an answer to your question.")
125
+ else:
126
+ st.write("Please enter a question to get an answer.")