drkareemkamal commited on
Commit
b0e9204
1 Parent(s): efb40b3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +106 -0
app.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_core.prompts import PromptTemplate
2
+ import os
3
+ from langchain_community.embeddings import HuggingFaceBgeEmbeddings
4
+ from langchain_community.vectorstores import FAISS
5
+ from langchain_community.llms.ctransformers import CTransformers
6
+ from langchain.chains.retrieval_qa.base import RetrievalQA
7
+ import streamlit as st
8
+
9
+ DB_FAISS_PATH = 'vectorstores/'
10
+
11
+ custom_prompt_template = '''use the following pieces of information to answer the user's questions.
12
+ If you don't know the answer, please just say that don't know the answer, don't try to make up an answer.
13
+ Context : {context}
14
+ Question : {question}
15
+ only return the helpful answer below and nothing else.
16
+ '''
17
+
18
+ def set_custom_prompt():
19
+ """
20
+ Prompt template for QA retrieval for vector stores
21
+ """
22
+ prompt = PromptTemplate(template=custom_prompt_template,
23
+ input_variables=['context', 'question'])
24
+ return prompt
25
+
26
+ def load_llm():
27
+ llm = CTransformers(
28
+ model='epfl-meditron-7b',
29
+ model_type='llma',
30
+ max_new_token=512,
31
+ temperature=0.5
32
+ )
33
+ return llm
34
+
35
+ def load_embeddings():
36
+ embeddings = HuggingFaceBgeEmbeddings(model_name='NeuML/pubmedbert-base-embeddings',
37
+ model_kwargs={'device': 'cpu'})
38
+ return embeddings
39
+
40
+ def load_faiss_index(embeddings):
41
+ db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
42
+ return db
43
+
44
+ def retrieval_qa_chain(llm, prompt, db):
45
+ qa_chain = RetrievalQA.from_chain_type(
46
+ llm=llm,
47
+ chain_type='stuff',
48
+ retriever=db.as_retriever(search_kwargs={'k': 2}),
49
+ return_source_documents=True,
50
+ chain_type_kwargs={'prompt': prompt}
51
+ )
52
+ return qa_chain
53
+
54
+ def qa_bot():
55
+ embeddings = load_embeddings()
56
+ db = load_faiss_index(embeddings)
57
+ llm = load_llm()
58
+ qa_prompt = set_custom_prompt()
59
+ qa = retrieval_qa_chain(llm, qa_prompt, db)
60
+ return qa
61
+
62
+ def final_result(query):
63
+ qa_result = qa_bot()
64
+ response = qa_result({'query': query})
65
+ return response
66
+
67
+ import streamlit as st
68
+
69
+ # Initialize the bot
70
+ bot = qa_bot()
71
+
72
+ # Streamlit webpage title
73
+ st.title('Medical Chatbot')
74
+
75
+ # User input
76
+ user_query = st.text_input("Please enter your question:")
77
+
78
+ # Button to get answer
79
+ if st.button('Get Answer'):
80
+ if user_query:
81
+ # Call the function from your chatbot script
82
+ response = final_result(user_query)
83
+ if response:
84
+ # Displaying the response
85
+ st.write("### Answer")
86
+ st.write(response['result'])
87
+
88
+ # Displaying source document details if available
89
+ if 'source_documents' in response:
90
+ st.write("### Source Document Information")
91
+ for doc in response['source_documents']:
92
+ # Retrieve and format page content by replacing '\n' with new line
93
+ formatted_content = doc.page_content.replace("\\n", "\n")
94
+ st.write("#### Document Content")
95
+ st.text_area(label="Page Content", value=formatted_content, height=300)
96
+
97
+ # Retrieve source and page from metadata
98
+ source = doc.metadata.get('source', 'Unknown')
99
+ page = doc.metadata.get('page', 'Unknown')
100
+ st.write(f"Source: {source}")
101
+ st.write(f"Page Number: {page}")
102
+
103
+ else:
104
+ st.write("Sorry, I couldn't find an answer to your question.")
105
+ else:
106
+ st.write("Please enter a question to get an answer.")