File size: 2,820 Bytes
5333123 869026e a66be3c 5333123 7cdc8bc 5333123 8342a63 5333123 84e3c0b 5333123 7cdc8bc 5333123 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import gradio as gr
from timeit import default_timer as timer
from typing import Tuple , Dict
import tensorflow as tf
import numpy as np
from PIL import Image
import os
# 1.Import and class names setup
class_names = ['CNV','DME','DRUSEN','NORMAL']
# 2. Model annd transforms prepration
# model = tf.keras.models.load_model(
# 'oct_classification_final_model_lg.keras', custom_objects=None, compile=True, safe_mode=True
# )
model = tf.keras.models.load_model(
# 'oct_classification_final_model_lg.keras', custom_objects=None, compile=True, safe_mode=False
'combined_model.keras', custom_objects=None, compile=True, safe_mode=False
)
# Load save weights
# 3.prediction function (predict())
def load_and_prep_imgg(img : Image.Image, img_shape=224, scale=True):
# if not isinstance(filename, str):
# raise ValueError("The filename must be a string representing the file path.")
# img = tf.io.read_file(filename)
# img = tf.io.decode_image(img, channels=3)
# img = tf.image.resize(img, size=[img_shape, img_shape])
# if scale:
# return img / 255
# else:
# return img
img = img.resize((img_shape, img_shape))
img = np.array(img)
if img.shape[-1] == 1: # If the image is grayscale
img = np.stack([img] * 3, axis=-1)
img = tf.convert_to_tensor(img, dtype=tf.float32)
if scale:
return img / 255.0
else:
return img
def predict(img) -> Tuple[Dict,float,float] :
start_time = timer()
image = load_and_prep_imgg(img)
#image = Image.open(image)
pred_img = model.predict(tf.expand_dims(image, axis=0))
pred_class = class_names[pred_img.argmax()]
print(f"Predicted macular diseases is: {pred_class} with probability: {pred_img.max():.2f}")
pred_probbb = pred_img.max() * 100
end_time = timer()
pred_time = round(end_time - start_time , 4)
return pred_class , pred_probbb , pred_time
### 4. Gradio app - our Gradio interface + launch command
title = 'Macular Disease Classification'
description = 'Feature Extraction VGG model to classify Macular Diseases by OCT'
article = 'Created with TensorFlow Model Deployment'
# Create example list
example_list = [['examples/'+ example] for example in os.listdir('examples')]
example_list
# create a gradio demo
demo = gr.Interface(fn=predict ,
inputs=gr.Image(type='pil'),
outputs=[gr.Label(num_top_classes = 3 , label= 'prediction'),
gr.Number(label= 'Prediction Probabilities'),
gr.Number(label= 'Prediction time (s)')],
examples = example_list,
title = title,
description = description,
article= article)
# Launch the demo
demo.launch(debug= False) |