File size: 5,049 Bytes
d3110a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
from langchain_core.prompts import PromptTemplate
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms.ctransformers import CTransformers
from langchain.chains.retrieval_qa.base import RetrievalQA
from langchain_community.llms import HuggingFaceHub
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain.prompts import PromptTemplate
from langchain.chains import create_retrieval_chain
from langchain.chains import RetrievalQA
from langchain.chains.combine_documents import create_stuff_documents_chain
import os
import streamlit as st
import fitz # PyMuPDF
from PIL import Image
import io
DB_FAISS_PATH = 'vectorstores/'
pdf_path = 'Oxford/Oxford-psychiatric-handbook-1-760.pdf'
# custom_prompt_template = '''use the following pieces of information to answer the user's questions.
# If you don't know the answer, please just say that don't know the answer, don't try to make uo an answer.
# Context : {context}
# Question : {question}
# only return the helpful answer below and nothing else.
# '''
custom_prompt_template = prompt_template="""
Use the following piece of context to answer the question asked.
Please try to provide the answer only based on the context
{context}
Question:{question}
"""
def set_custom_prompt():
"""
Prompt template for QA retrieval for vector stores
"""
prompt = PromptTemplate(template = custom_prompt_template,
input_variables = ['context','question'])
return prompt
def load_llm():
# llm = CTransformers(
# model = 'TheBloke/Llama-2-7B-Chat-GGML',
# model_type = 'llama',
# max_new_token = 512,
# temperature = 0.5
# )
llm = HuggingFaceHub(
repo_id = "mistralai/Mistral-7B-v0.1",
model_kwargs = {'temperature': 0.1, "max_length": 500}
)
return llm
def retrieval_qa_chain(llm,prompt,db):
qa_chain = RetrievalQA.from_chain_type(
llm = llm,
chain_type = 'stuff',
retriever = db.as_retriever(search_type = 'similarity',search_kwargs = {'k': 3}),
return_source_documents = True,
chain_type_kwargs = {'prompt': prompt}
)
return qa_chain
def qa_bot():
embeddings = HuggingFaceBgeEmbeddings(model_name = 'BAAI/bge-small-en-v1.5',#'sentence-transformers/all-MiniLM-L6-v2',
model_kwargs = {'device':'cpu'},
encode_kwargs = {'normalize_embeddings': True})
db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
llm = load_llm()
qa_prompt = set_custom_prompt()
qa = retrieval_qa_chain(llm,qa_prompt, db)
return qa
def final_result(query):
qa_result = qa_bot()
response = qa_result({'query' : query})
return response
def get_pdf_page_as_image(pdf_path, page_number):
document = fitz.open(pdf_path)
page = document.load_page(page_number)
pix = page.get_pixmap()
img = Image.open(io.BytesIO(pix.tobytes()))
return img
# Streamlit webpage title
st.title('Medical Chatbot')
# User input
user_query = st.text_input("Please enter your question:")
# Button to get answer
if st.button('Get Answer'):
if user_query:
# Call the function from your chatbot script
response = final_result(user_query)
if response:
# Displaying the response
st.write("### Answer")
st.write(response['result'])
# Displaying source document details if available
if 'source_documents' in response:
st.write("### Source Document Information")
for doc in response['source_documents']:
# Retrieve and format page content by replacing '\n' with new line
formatted_content = doc.page_content.replace("\\n", "\n")
st.write("#### Document Content")
st.text_area(label="Page Content", value=formatted_content, height=300)
# Retrieve source and page from metadata
source = doc.metadata['source']
page = doc.metadata['page']
st.write(f"Source: {source}")
st.write(f"Page Number: {page+1}")
# Display the PDF page as an image
#source = r"{source}"
pdf_page_image = get_pdf_page_as_image(pdf_path, page)
st.image(pdf_page_image, caption=f"Page {page+1} from {source}")
else:
st.write("Sorry, I couldn't find an answer to your question.")
else:
st.write("Please enter a question to get an answer.")
|