drkareemkamal commited on
Commit
8425629
1 Parent(s): 6e723b0

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -128
app.py DELETED
@@ -1,128 +0,0 @@
1
- from langchain_core.prompts import PromptTemplate
2
- import os
3
- from langchain_community.embeddings import HuggingFaceBgeEmbeddings
4
- from langchain_community.vectorstores import FAISS
5
- from langchain_community.llms.ctransformers import CTransformers
6
- from langchain.chains.retrieval_qa.base import RetrievalQA
7
- import streamlit as st
8
- import fitz # PyMuPDF
9
- from PIL import Image
10
- import io
11
-
12
- DB_FAISS_PATH = 'vectorstores/'
13
- pdf_path = 'Oxford/Oxford-psychiatric-handbook-1-760.pdf'
14
-
15
- # custom_prompt_template = '''use the following pieces of information to answer the user's questions.
16
- # If you don't know the answer, please just say that don't know the answer, don't try to make uo an answer.
17
- # Context : {context}
18
- # Question : {question}
19
- # only return the helpful answer below and nothing else.
20
- # '''
21
- custom_prompt_template = prompt_template="""
22
- Use the following piece of context to answer the question asked.
23
- Please try to provide the answer only based on the context
24
-
25
- {context}
26
- Question:{question}
27
-
28
- """
29
- def set_custom_prompt():
30
- """
31
- Prompt template for QA retrieval for vector stores
32
- """
33
- prompt = PromptTemplate(template = custom_prompt_template,
34
- input_variables = ['context','question'])
35
-
36
- return prompt
37
-
38
-
39
- def load_llm():
40
- # llm = CTransformers(
41
- # model = 'TheBloke/Llama-2-7B-Chat-GGML',
42
- # model_type = 'llama',
43
- # max_new_token = 512,
44
- # temperature = 0.5
45
- # )
46
- llm = HuggingFaceHub(
47
- repo_id = "mistralai/Mistral-7B-v0.1",
48
- model_kwargs = {'temperature': 0.1, "max_length": 500}
49
- )
50
- return llm
51
-
52
- def retrieval_qa_chain(llm,prompt,db):
53
- qa_chain = RetrievalQA.from_chain_type(
54
- llm = llm,
55
- chain_type = 'stuff',
56
- retriever = db.as_retriever(search_type = 'similarity',search_kwargs = {'k': 3}),
57
- return_source_documents = True,
58
- chain_type_kwargs = {'prompt': prompt}
59
- )
60
-
61
- return qa_chain
62
-
63
- def qa_bot():
64
- embeddings = HuggingFaceBgeEmbeddings(model_name = 'BAAI/bge-small-en-v1.5',#'sentence-transformers/all-MiniLM-L6-v2',
65
- model_kwargs = {'device':'cpu'},
66
- encode_kwargs = {'normalize_embeddings': True})
67
-
68
-
69
- db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
70
- llm = load_llm()
71
- qa_prompt = set_custom_prompt()
72
- qa = retrieval_qa_chain(llm,qa_prompt, db)
73
-
74
- return qa
75
-
76
- def final_result(query):
77
- qa_result = qa_bot()
78
- response = qa_result({'query' : query})
79
-
80
- return response
81
-
82
- def get_pdf_page_as_image(pdf_path, page_number):
83
- document = fitz.open(pdf_path)
84
- page = document.load_page(page_number)
85
- pix = page.get_pixmap()
86
- img = Image.open(io.BytesIO(pix.tobytes()))
87
- return img
88
-
89
- # Streamlit webpage title
90
- st.title('Medical Chatbot')
91
-
92
- # User input
93
- user_query = st.text_input("Please enter your question:")
94
-
95
- # Button to get answer
96
- if st.button('Get Answer'):
97
- if user_query:
98
- # Call the function from your chatbot script
99
- response = final_result(user_query)
100
- if response:
101
- # Displaying the response
102
- st.write("### Answer")
103
- st.write(response['result'])
104
-
105
- # Displaying source document details if available
106
- if 'source_documents' in response:
107
- st.write("### Source Document Information")
108
- for doc in response['source_documents']:
109
- # Retrieve and format page content by replacing '\n' with new line
110
- formatted_content = doc.page_content.replace("\\n", "\n")
111
- st.write("#### Document Content")
112
- st.text_area(label="Page Content", value=formatted_content, height=300)
113
-
114
- # Retrieve source and page from metadata
115
- source = doc.metadata['source']
116
- page = doc.metadata['page']
117
- st.write(f"Source: {source}")
118
- st.write(f"Page Number: {page+1}")
119
-
120
- # Display the PDF page as an image
121
- source = source.replace("\","/")
122
- pdf_page_image = get_pdf_page_as_image(source, page)
123
- st.image(pdf_page_image, caption=f"Page {page+1} from {source}")
124
-
125
- else:
126
- st.write("Sorry, I couldn't find an answer to your question.")
127
- else:
128
- st.write("Please enter a question to get an answer.")