File size: 29,932 Bytes
b887586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#!/usr/bin/env python3

# Code by Kat Crowson in k-diffusion repo, modified by Scott H Hawley (SHH)

"""Samples from k-diffusion models."""

import argparse
from pathlib import Path

import accelerate
import safetensors.torch as safetorch
import torch
from tqdm import trange, tqdm
from PIL import Image
from torchvision import transforms

import k_diffusion as K

from control_toys.v_diffusion import DDPM, LogSchedule, CrashSchedule
#CHORD_BORDER = 8   # chord border size in pixels
from control_toys.chords import CHORD_BORDER, img_batch_to_seq_emb, ChordSeqEncoder


# ---- my mangled sampler that includes repaint 
import torchsde 

class BatchedBrownianTree:
    """A wrapper around torchsde.BrownianTree that enables batches of entropy."""

    def __init__(self, x, t0, t1, seed=None, **kwargs):
        t0, t1, self.sign = self.sort(t0, t1)
        w0 = kwargs.get('w0', torch.zeros_like(x))
        if seed is None:
            seed = torch.randint(0, 2 ** 63 - 1, []).item()
        self.batched = True
        try:
            assert len(seed) == x.shape[0]
            w0 = w0[0]
        except TypeError:
            seed = [seed]
            self.batched = False
        self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]

    @staticmethod
    def sort(a, b):
        return (a, b, 1) if a < b else (b, a, -1)

    def __call__(self, t0, t1):
        t0, t1, sign = self.sort(t0, t1)
        w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
        return w if self.batched else w[0]


class BrownianTreeNoiseSampler:
    """A noise sampler backed by a torchsde.BrownianTree.

    Args:
        x (Tensor): The tensor whose shape, device and dtype to use to generate
            random samples.
        sigma_min (float): The low end of the valid interval.
        sigma_max (float): The high end of the valid interval.
        seed (int or List[int]): The random seed. If a list of seeds is
            supplied instead of a single integer, then the noise sampler will
            use one BrownianTree per batch item, each with its own seed.
        transform (callable): A function that maps sigma to the sampler's
            internal timestep.
    """

    def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
        self.transform = transform
        t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
        self.tree = BatchedBrownianTree(x, t0, t1, seed)

    def __call__(self, sigma, sigma_next):
        t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
        return self.tree(t0, t1) / (t1 - t0).abs().sqrt()

def append_dims(x, target_dims):
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
    return x[(...,) + (None,) * dims_to_append]


def to_d(x, sigma, denoised):
    """Converts a denoiser output to a Karras ODE derivative."""
    return (x - denoised) / append_dims(sigma, x.ndim)


@torch.no_grad()
def my_sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., repaint=1):
    """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])
    for i in trange(len(sigmas) - 1, disable=disable):
        for u in range(repaint):
            gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
            eps = torch.randn_like(x) * s_noise
            sigma_hat = sigmas[i] * (gamma + 1)
            if gamma > 0:
                x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
            denoised = model(x, sigma_hat * s_in, **extra_args)
            d = to_d(x, sigma_hat, denoised)
            if callback is not None:
                callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
            dt = sigmas[i + 1] - sigma_hat
            # Euler method
            x = x + d * dt
            if x.isnan().any():
                assert False, f"x has NaNs, i = {i}, u = {u}, repaint = {repaint}"
            if u < repaint - 1:
                beta = (sigmas[i + 1] / sigmas[-1]) ** 2
                x = torch.sqrt(1 - beta) * x + torch.sqrt(beta) * torch.randn_like(x)

    return x

def get_scalings(sigma, sigma_data=0.5):
    c_skip = sigma_data ** 2 / (sigma ** 2 + sigma_data ** 2)
    c_out = sigma * sigma_data / (sigma ** 2 + sigma_data ** 2) ** 0.5
    c_in = 1 / (sigma ** 2 + sigma_data ** 2) ** 0.5
    return c_skip, c_out, c_in


@torch.no_grad()
def my_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, 
                    disable=None, eta=1., s_noise=1., noise_sampler=None, 
                    solver_type='midpoint',
                    repaint=4):
    """DPM-Solver++(2M) SDE.  but with repaint added"""

    if solver_type not in {'heun', 'midpoint'}:
        raise ValueError('solver_type must be \'heun\' or \'midpoint\'')

    sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
    noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
    extra_args = {} if extra_args is None else extra_args
    s_in = x.new_ones([x.shape[0]])

    old_denoised = None
    h_last = None
    old_x = None

    for i in trange(len(sigmas) - 1, disable=disable):  # time loop

        for u in range(repaint):
            denoised = model(x, sigmas[i] * s_in, **extra_args)
            if callback is not None:
                callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
            #print("i, u, sigmas[i], sigmas[i + 1] = ", i, u, sigmas[i], sigmas[i + 1])
            if sigmas[i + 1] == 0:
                # Denoising step
                x = denoised
            else:
                # DPM-Solver++(2M) SDE
                t, s = -sigmas[i].log(), -sigmas[i + 1].log()
                h = s - t
                eta_h = eta * h

                x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised

                if old_denoised is not None:
                    r = h_last / h
                    if solver_type == 'heun':
                        x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
                    elif solver_type == 'midpoint':
                        x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)

                if eta:
                    x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
                
                
                if callback is not None:
                    callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})   

                if x.isnan().any():
                    assert False, f"x has NaNs, i = {i}, u = {u}, repaint = {repaint}"
            
                if u < repaint - 1:
                    # RePaint: go "back" in integration via the "forward" process, by adding a little noise to x
                    #  ...but scaled properly!
                    # But how to convert from original RePaint to k-diffusion?  I'll try a few variants
                    repaint_choice = 'orig' # ['orig','var1','var2', etc...]

                    sigma_diff = (sigmas[i] - sigmas[i+1]).abs()
                    sigma_ratio = ( sigmas[i+1] / sigma_max ) # use i+1 or i?
                    if repaint_choice == 'orig': # attempt at original RePaint algorithm, which used betas
                        # if sigmas are the std devs, then betas are variances?  but beta_max = 1, so how to get that? ratio?
                        beta = sigma_ratio**2
                        x = torch.sqrt(1-beta)*x +  torch.sqrt(beta)*torch.randn_like(x) # this is from RePaint Paper
                    elif repaint_choice == 'var1': # or maybe this...?  # worse than orig
                        x = x + sigma_diff*torch.randn_like(x)
                    elif repaint_choice == 'var2':  # or this...?  # yields NaNs
                        x = (1-sigma_diff)*x + sigma_diff*torch.randn_like(x)
                    elif repaint_choice == 'var3':            # results similar to var1
                        x = (1.0-sigma_ratio)*x + sigmas[i+1]*torch.randn_like(x)
                    elif repaint_choice == 'var4':   # NaNs         # stealing code from elsewhere, no idea WTF I'm doing.
                        #Invert this: target = (input - c_skip * noised_input) / c_out, where target = model_output
                        x_tm1, x_t = x, old_x 
                        #              x_tm1 = ( x_0  - c_skip * noised_x0 ) / c_out
                        #       So     x_tm1*c_out = x_0 - c_skip * noised_x0
                        input, noise = x_tm1, torch.randn_like(x)
                        noised_input = input + noise * append_dims(sigma_diff, input.ndim)
                        c_skip, c_out, c_in = [append_dims(x, input.ndim) for x in get_scalings(sigmas[i])]
                        model_output = x_tm1
                        renoised_x = c_out * model_output + c_skip * noised_input 
                        x = renoised_x
                    elif repaint_choice == 'var5':
                        x = torch.sqrt((1-(sigma_diff/sigma_max)**2))*x + sigma_diff*torch.randn_like(x)

                    # include this?  guessing no.
                    #old_denoised = denoised
                    #h_last = h

        old_denoised = denoised
        h_last = h
        old_x = x
    return x




# -----from stable-audio-tools

# Define the noise schedule and sampling loop
def get_alphas_sigmas(t):
    """Returns the scaling factors for the clean image (alpha) and for the
    noise (sigma), given a timestep."""
    return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)

def alpha_sigma_to_t(alpha, sigma):
    """Returns a timestep, given the scaling factors for the clean image and for
    the noise."""
    return torch.atan2(sigma, alpha) / math.pi * 2

def t_to_alpha_sigma(t):
    """Returns the scaling factors for the clean image and for the noise, given
    a timestep."""
    return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)

@torch.no_grad()
def sample(model, x, steps, eta, **extra_args):
    """Draws samples from a model given starting noise. v-diffusion"""
    ts = x.new_ones([x.shape[0]])

    # Create the noise schedule
    t = torch.linspace(1, 0, steps + 1)[:-1]

    alphas, sigmas = get_alphas_sigmas(t)

    # The sampling loop
    for i in trange(steps):

        # Get the model output (v, the predicted velocity)
        with torch.cuda.amp.autocast():
            v = model(x, ts * t[i], **extra_args).float()

        # Predict the noise and the denoised image
        pred = x * alphas[i] - v * sigmas[i]
        eps = x * sigmas[i] + v * alphas[i]

        # If we are not on the last timestep, compute the noisy image for the
        # next timestep.
        if i < steps - 1:
            # If eta > 0, adjust the scaling factor for the predicted noise
            # downward according to the amount of additional noise to add
            ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \
                (1 - alphas[i]**2 / alphas[i + 1]**2).sqrt()
            adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt()

            # Recombine the predicted noise and predicted denoised image in the
            # correct proportions for the next step
            x = pred * alphas[i + 1] + eps * adjusted_sigma

            # Add the correct amount of fresh noise
            if eta:
                x += torch.randn_like(x) * ddim_sigma

    # If we are on the last timestep, output the denoised image
    return pred

# Soft mask inpainting is just shrinking hard (binary) mask inpainting
# Given a float-valued soft mask (values between 0 and 1), get the binary mask for this particular step
def get_bmask(i, steps, mask):
    strength = (i+1)/(steps)
    # convert to binary mask
    bmask = torch.where(mask<=strength,1,0)
    return bmask

def make_cond_model_fn(model, cond_fn):
    def cond_model_fn(x, sigma, **kwargs):
        with torch.enable_grad():
            x = x.detach().requires_grad_()
            denoised = model(x, sigma, **kwargs)
            cond_grad = cond_fn(x, sigma, denoised=denoised, **kwargs).detach()
            cond_denoised = denoised.detach() + cond_grad * K.utils.append_dims(sigma**2, x.ndim)
        return cond_denoised
    return cond_model_fn

# Uses k-diffusion from https://github.com/crowsonkb/k-diffusion
# init_data is init_audio as latents (if this is latent diffusion)
# For sampling, set both init_data and mask to None
# For variations, set init_data 
# For inpainting, set both init_data & mask 
def sample_k(
        model_fn, 
        noise, 
        init_data=None,
        mask=None,
        steps=100, 
        sampler_type="dpmpp-2m-sde", 
        sigma_min=0.5, 
        sigma_max=50, 
        rho=1.0, device="cuda", 
        callback=None, 
        cond_fn=None,
        model_config=None,
        repaint=1,
        **extra_args
    ):

    #denoiser = K.external.VDenoiser(model_fn)
    denoiser = K.Denoiser(model_fn, sigma_data=model_config['sigma_data'])

    if cond_fn is not None:
        denoiser = make_cond_model_fn(denoiser, cond_fn)

    # Make the list of sigmas. Sigma values are scalars related to the amount of noise each denoising step has
    #sigmas = K.sampling.get_sigmas_polyexponential(steps, sigma_min, sigma_max, rho, device=device)
    sigmas = K.sampling.get_sigmas_karras(steps, sigma_min, sigma_max, rho=7., device=device)
    print("sigmas[0] = ", sigmas[0])
    # Scale the initial noise by sigma 
    noise = noise * sigmas[0]

    wrapped_callback = callback

    if mask is None and init_data is not None:
        # VARIATION (no inpainting)
        # set the initial latent to the init_data, and noise it with initial sigma
        x = init_data + noise 
    elif mask is not None and init_data is not None:
        # INPAINTING
        bmask = get_bmask(0, steps, mask)
        # initial noising
        input_noised = init_data + noise
        # set the initial latent to a mix of init_data and noise, based on step 0's binary mask
        x = input_noised * bmask + noise * (1-bmask)
        # define the inpainting callback function (Note: side effects, it mutates x)
        # See https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py#L596C13-L596C105
        # callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
        # This is called immediately after `denoised = model(x, sigmas[i] * s_in, **extra_args)`
        def inpainting_callback(args):
            i = args["i"]
            x = args["x"]
            sigma = args["sigma"]
            #denoised = args["denoised"]
            # noise the init_data input with this step's appropriate amount of noise
            input_noised = init_data + torch.randn_like(init_data) * sigma
            # shrinking hard mask
            bmask = get_bmask(i, steps, mask)
            # mix input_noise with x, using binary mask
            new_x = input_noised * bmask + x * (1-bmask)
            # mutate x
            x[:,:,:] = new_x[:,:,:]
        # wrap together the inpainting callback and the user-submitted callback. 
        if callback is None: 
            wrapped_callback = inpainting_callback
        else:
            wrapped_callback = lambda args: (inpainting_callback(args), callback(args))
    else:
        # SAMPLING
        # set the initial latent to noise
        x = noise


    print("sample_k: x.min, x.max = ", x.min(), x.max())
    print(f"sample_k: key, val.dtype = ",[ (key, val.dtype if val is not None else val) for key,val in extra_args.items()])
    with torch.cuda.amp.autocast():
        if sampler_type == "k-heun":
            return K.sampling.sample_heun(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
        elif sampler_type == "k-lms":
            return K.sampling.sample_lms(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
        elif sampler_type == "k-dpmpp-2s-ancestral":
            return K.sampling.sample_dpmpp_2s_ancestral(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
        elif sampler_type == "k-dpm-2":
            return K.sampling.sample_dpm_2(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
        elif sampler_type == "k-dpm-fast":
            return K.sampling.sample_dpm_fast(denoiser, x, sigma_min, sigma_max, steps, disable=False, callback=wrapped_callback, extra_args=extra_args)
        elif sampler_type == "k-dpm-adaptive":
            return K.sampling.sample_dpm_adaptive(denoiser, x, sigma_min, sigma_max, rtol=0.01, atol=0.01, disable=False, callback=wrapped_callback, extra_args=extra_args)
        elif sampler_type == "dpmpp-2m-sde":
            return K.sampling.sample_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
        elif sampler_type == "my-dpmpp-2m-sde":
            return my_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, repaint=repaint, extra_args=extra_args)
        elif sampler_type == "dpmpp-3m-sde":
            return K.sampling.sample_dpmpp_3m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
        elif sampler_type == "my-sample-euler":
            return my_sample_euler(denoiser, x, sigmas, disable=False, callback=wrapped_callback, repaint=repaint, extra_args=extra_args)


## ---- end stable-audio-tools
def infer_mask_from_init_img(img, mask_with='white'):
    """given an image with mask areas marked, extract the mask itself
       note, this works whether image is normalized on 0..1 or -1..1, but not 0..255"""
    print("Inferring mask from init_img")
    assert mask_with in ['blue','white']
    if not torch.is_tensor(img):
        img = ToTensor()(img)
    mask = torch.zeros(img.shape[-2:])
    if mask_with == 'white':
        mask[ (img[0,:,:]==1) & (img[1,:,:]==1) & (img[2,:,:]==1)] = 1
    elif mask_with == 'blue':
        mask[img[2,:,:]==1] = 1  # blue
    return mask*1.0

def grow_mask(init_mask, grow_by=2):
    "adds a border of grow_by pixels to the mask, by growing it grow_by times. If grow_by=0, does nothing"
    new_mask = init_mask.clone()
    for c in range(grow_by):
        # wherever mask is bordered by a 1, set it to 1
        new_mask[1:-1,1:-1] = (new_mask[1:-1,1:-1] + new_mask[0:-2,1:-1] + new_mask[2:,1:-1] + new_mask[1:-1,0:-2] + new_mask[1:-1,2:]) > 0 
    return new_mask


def add_seeding(init_image, init_mask, grow_by=0, seed_scale=1.0):
    "adds extra noise inside mask"
    init_mask = grow_mask(init_mask, grow_by=grow_by)  # make the mask bigger
    if not torch.is_tensor(init_image):
        init_image = ToTensor()(init_image)
    init_image = init_image.clone()
    # wherever mask is 1, set first set init_image to min value 
    init_image[:,init_mask == 1] = init_image.min()   
    init_image = init_image + seed_scale*torch.randn_like(init_image) * (init_mask) # add noise where mask is 1
    # wherever the mask is 1, set the blue channel to -1.0, otherwise leave it alone
    init_image[2,:,:] = init_image[2,:,:] * (1-init_mask) - 1.0*init_mask
    return init_image


def get_init_image_and_mask(args, device):
    convert_tensor = transforms.ToTensor()
    init_image = Image.open(args.init_image).convert('RGB')
    init_image = convert_tensor(init_image)
    #normalize image from 0..1 to -1..1
    init_image = (2.0 * init_image) - 1.0


    init_mask = torch.ones(init_image.shape[-2:])  # ones are where stuff will change, zeros will stay the same

    inpaint_task = 'infer'  # infer mask from init_image
    assert inpaint_task in ['accomp','chords','melody','nucleation','notes','continue','infer']

    if inpaint_task in ['melody','accomp']:
        init_mask[0:70,:] = 0 # zero out a melody strip of image near top
        init_mask[128+0:128+70,:] = 0 # zero out a melody strip of image along bottom row
        if inpaint_task == 'melody':
            init_mask = 1 - init_mask 
    elif inpaint_task in ['notes','chords']:
        # keep chords only
        #init_mask = torch.ones_like(x) 
        init_mask[0:CHORD_BORDER,:] = 0  # top row of 256x256
        init_mask[128-CHORD_BORDER:128+CHORD_BORDER,:] = 0  # middle rows of 256x256
        init_mask[-CHORD_BORDER:,:] = 0  # bottom row of 256x256
        if inpaint_task == 'chords':
            init_mask = 1 - init_mask # inverse: genereate chords given notes
    elif inpaint_task == 'continue': 
        init_mask[0:128,:] = 0     # remember it's a square, so just mask out the bottom half
    elif inpaint_task == 'nucleation':
        # set mask to wherever the blue channel is >= 0.9
        init_mask = (init_image[2,:,:] > 0.0)*1.0
        # zero out init mask in top and bottom borders
        init_mask[0:CHORD_BORDER,:] = 0
        init_mask[-CHORD_BORDER:,:] = 0
        init_mask[128-CHORD_BORDER:128+CHORD_BORDER,:] = 0

        # remove all blue in init_image between the borders
        init_image[2,CHORD_BORDER:128-CHORD_BORDER,:] = -1.0
        init_image[2,128+CHORD_BORDER:-CHORD_BORDER,:] = -1.0

        # grow the sides of the mask by one pixel:
        # wherever mask is zero but is bordered by a 1, set it to 1
        init_mask[1:-1,1:-1] = (init_mask[1:-1,1:-1] + init_mask[0:-2,1:-1] + init_mask[2:,1:-1] + init_mask[1:-1,0:-2] + init_mask[1:-1,2:]) > 0 
        #init_mask[1:-1,1:-1] = (init_mask[1:-1,1:-1] + init_mask[0:-2,1:-1] + init_mask[2:,1:-1] + init_mask[1:-1,0:-2] + init_mask[1:-1,2:]) > 0 
    elif inpaint_task == 'infer':
        init_mask = infer_mask_from_init_img(init_image, mask_with='white')

    # Also black out init_image wherever init mask is 1 
    init_image[:,init_mask == 1] = init_image.min()

    if args.seed_scale > 0: # driving nucleation
        print("Seeding nucleation, seed_scale = ", args.seed_scale)
        init_image = add_seeding(init_image, init_mask, grow_by=0, seed_scale=args.seed_scale)

    # remove any blue in middle of init image
    print("init_image.shape = ", init_image.shape)
    init_image[2,CHORD_BORDER:128-CHORD_BORDER,:] = -1.0
    init_image[2,128+CHORD_BORDER:-CHORD_BORDER,:] = -1.0

    # Debugging: output some images so we can see what's going on
    init_mask_t = init_mask.float()*255 # convert mask to 0..255 for writing as image
    # Convert to NumPy array and rearrange dimensions
    init_mask_img_numpy = init_mask_t.byte().cpu().numpy()#.transpose(1, 2, 0)
    init_mask_debug_img = Image.fromarray(init_mask_img_numpy)
    init_mask_debug_img.save("init_mask_debug.png")
    init_image_debug_img = Image.fromarray((init_image*127.5+127.5).byte().cpu().numpy().transpose(1,2,0))
    init_image_debug_img.save("init_image_debug.png")

    # reshape image and mask to be 4D tensors
    init_image = init_image.unsqueeze(0).repeat(args.batch_size, 1, 1, 1)
    init_mask = init_mask.unsqueeze(0).unsqueeze(1).repeat(args.batch_size,3,1,1).float()
    return init_image.to(device), init_mask.to(device)


def main():
    global init_image, init_mask
    p = argparse.ArgumentParser(description=__doc__,
                                formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    p.add_argument('--batch-size', type=int, default=64,
                   help='the batch size')
    p.add_argument('--checkpoint', type=Path, required=True,
                   help='the checkpoint to use')
    p.add_argument('--config', type=Path,
                   help='the model config')
    p.add_argument('-n', type=int, default=64,
                   help='the number of images to sample')
    p.add_argument('--prefix', type=str, default='out',
                   help='the output prefix')
    p.add_argument('--repaint', type=int, default=1,
                   help='number of (re)paint steps')
    p.add_argument('--steps', type=int, default=50,
                   help='the number of denoising steps')
    p.add_argument('--seed-scale', type=float, default=0.0, help='strength of nucleation seeding')
    p.add_argument('--init-image', type=Path, default=None, help='the initial image')
    p.add_argument('--init-strength', type=float, default=1., help='strength of init image')
    args = p.parse_args()
    print("args =", args, flush=True)

    config = K.config.load_config(args.config if args.config else args.checkpoint)
    model_config = config['model']
    # TODO: allow non-square input sizes
    assert len(model_config['input_size']) == 2 and model_config['input_size'][0] == model_config['input_size'][1]
    size = model_config['input_size']

    accelerator = accelerate.Accelerator()
    device = accelerator.device
    print('Using device:', device, flush=True)

    inner_model = K.config.make_model(config).eval().requires_grad_(False).to(device)
    cse = None # ChordSeqEncoder().eval().requires_grad_(False).to(device)  # add chord embedding-maker to main model
    if cse is not None:
        inner_model.cse = cse
    try:
        inner_model.load_state_dict(safetorch.load_file(args.checkpoint))
    except:
        #ckpt = torch.load(args.checkpoint).to(device)
        ckpt = torch.load(args.checkpoint, map_location='cpu')
        inner_model.load_state_dict(ckpt['model'])

    accelerator.print('Parameters:', K.utils.n_params(inner_model))
    model = K.Denoiser(inner_model, sigma_data=model_config['sigma_data'])

    sigma_min = model_config['sigma_min']
    sigma_max = model_config['sigma_max']

    # SHH modified
    torch.set_float32_matmul_precision('high')
    #class_cond = torch.tensor([0]).to(device)
    #num_classes = 10
    #class_cond = torch.remainder(torch.arange(0, args.n), num_classes).int().to(device)
    #extra_args = {'class_cond':class_cond}
    extra_args = {}
    init_image, init_mask = None, None
    if args.init_image is not None:
        init_image, init_mask = get_init_image_and_mask(args, device)
        init_image = init_image.to(device)
        init_mask = init_mask.to(device)

    @torch.no_grad()
    @K.utils.eval_mode(model)
    def run():
        global init_image, init_mask
        if accelerator.is_local_main_process:
            tqdm.write('Sampling...')
        sigmas = K.sampling.get_sigmas_karras(args.steps, sigma_min, sigma_max, rho=7., device=device)

        #ddpm_sampler = DDPM(model)
        #model_fn = model
        #ddpm_sampler = K.external.VDenoiser(model_fn)

        def sample_fn(n, debug=True):
            x = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device) * sigma_max
            print("n, sigma_max, x.min, x.max = ", n, sigma_max, x.min(), x.max())

            if args.init_image is not None:
                init_data, mask = get_init_image_and_mask(args, device)
                init_data = args.seed_scale*x*mask + (1-mask)*init_data  # extra nucleation?
                if cse is not None: 
                    chord_cond = img_batch_to_seq_emb(init_data, inner_model.cse).to(device)
                else: 
                    chord_cond = None
                #print("init_data.shape, init_data.min, init_data.max = ", init_data.shape, init_data.min(), init_data.max())
            else:
                init_data, mask, chord_cond = None, None, None

            print("chord_cond = ", chord_cond)
            extra_args['chord_cond'] = chord_cond
            # these two work:
            #x_0 = K.sampling.sample_lms(model, x, sigmas, disable=not accelerator.is_local_main_process, extra_args=extra_args)
            #x_0 = K.sampling.sample_dpmpp_2m_sde(model, x, sigmas, disable=not accelerator.is_local_main_process, extra_args=extra_args)

            noise = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device) 

            sampler_type="my-dpmpp-2m-sde"  # "k-lms"
            #sampler_type="my-sample-euler"
            #sampler_type="dpmpp-2m-sde"  
            #sampler_type = "dpmpp-3m-sde"
            #sampler_type = "k-dpmpp-2s-ancestral"
            print("dtypes:", [x.dtype if x is not None else None  for x in [noise, init_data, mask, chord_cond]])
            x_0 = sample_k(inner_model, noise, sampler_type=sampler_type, 
                           init_data=init_data, mask=mask, steps=args.steps, 
                           sigma_min=sigma_min, sigma_max=sigma_max, rho=7., 
                           device=device, model_config=model_config, repaint=args.repaint, 
                           **extra_args)
            #x_0 = sample_k(inner_model, noise, sampler_type="dpmpp-2m-sde", steps=100,  sigma_min=0.5, sigma_max=50, rho=1., device=device,  model_config=model_config, **extra_args)
            print("x_0.min, x_0.max = ", x_0.min(), x_0.max())
            if x_0.isnan().any():
                assert False, "x_0 has NaNs"
            
            # do gpu garbage collection before proceeding
            torch.cuda.empty_cache()
            return x_0
        
        x_0 = K.evaluation.compute_features(accelerator, sample_fn, lambda x: x, args.n, args.batch_size)
        if accelerator.is_main_process:
            for i, out in enumerate(x_0):
                filename = f'{args.prefix}_{i:05}.png'
                K.utils.to_pil_image(out).save(filename)

    try:
        run()
    except KeyboardInterrupt:
        pass


if __name__ == '__main__':
    main()