PicturesOfMIDI / sample.py
drscotthawley's picture
now calling zero_wrapper directly
f084bcc
raw
history blame
34.6 kB
#!/usr/bin/env python3
# Code by Kat Crowson in k-diffusion repo, modified by Scott H Hawley (SHH)
# Modified by Scott H. Hawley for masking, ZeroGPU ets.
"""Samples from k-diffusion models."""
import argparse
from pathlib import Path
import accelerate
import safetensors.torch as safetorch
import torch
from tqdm import trange, tqdm
from PIL import Image
from torchvision import transforms
import k_diffusion as K
from pom.v_diffusion import DDPM, LogSchedule, CrashSchedule
#CHORD_BORDER = 8 # chord border size in pixels
from pom.chords import CHORD_BORDER, img_batch_to_seq_emb, ChordSeqEncoder
# ---- my mangled sampler that includes repaint
import torchsde
class BatchedBrownianTree:
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
def __init__(self, x, t0, t1, seed=None, **kwargs):
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get('w0', torch.zeros_like(x))
if seed is None:
seed = torch.randint(0, 2 ** 63 - 1, []).item()
self.batched = True
try:
assert len(seed) == x.shape[0]
w0 = w0[0]
except TypeError:
seed = [seed]
self.batched = False
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
@staticmethod
def sort(a, b):
return (a, b, 1) if a < b else (b, a, -1)
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
return w if self.batched else w[0]
class BrownianTreeNoiseSampler:
"""A noise sampler backed by a torchsde.BrownianTree.
Args:
x (Tensor): The tensor whose shape, device and dtype to use to generate
random samples.
sigma_min (float): The low end of the valid interval.
sigma_max (float): The high end of the valid interval.
seed (int or List[int]): The random seed. If a list of seeds is
supplied instead of a single integer, then the noise sampler will
use one BrownianTree per batch item, each with its own seed.
transform (callable): A function that maps sigma to the sampler's
internal timestep.
"""
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
self.transform = transform
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
self.tree = BatchedBrownianTree(x, t0, t1, seed)
def __call__(self, sigma, sigma_next):
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
return x[(...,) + (None,) * dims_to_append]
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / append_dims(sigma, x.ndim)
@torch.no_grad()
def my_sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., repaint=1):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
for u in range(repaint):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
if x.isnan().any():
assert False, f"x has NaNs, i = {i}, u = {u}, repaint = {repaint}"
if u < repaint - 1:
beta = (sigmas[i + 1] / sigmas[-1]) ** 2
x = torch.sqrt(1 - beta) * x + torch.sqrt(beta) * torch.randn_like(x)
return x
def get_scalings(sigma, sigma_data=0.5):
c_skip = sigma_data ** 2 / (sigma ** 2 + sigma_data ** 2)
c_out = sigma * sigma_data / (sigma ** 2 + sigma_data ** 2) ** 0.5
c_in = 1 / (sigma ** 2 + sigma_data ** 2) ** 0.5
return c_skip, c_out, c_in
@torch.no_grad()
def my_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None,
disable=None, eta=1., s_noise=1., noise_sampler=None,
solver_type='midpoint',
repaint=4):
"""DPM-Solver++(2M) SDE. but with repaint added"""
if solver_type not in {'heun', 'midpoint'}:
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_denoised = None
h_last = None
old_x = None
for i in trange(len(sigmas) - 1, disable=disable): # time loop
for u in range(repaint):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
#print("i, u, sigmas[i], sigmas[i + 1] = ", i, u, sigmas[i], sigmas[i + 1])
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
# DPM-Solver++(2M) SDE
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
if solver_type == 'heun':
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
elif solver_type == 'midpoint':
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
if eta:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if x.isnan().any():
assert False, f"x has NaNs, i = {i}, u = {u}, repaint = {repaint}"
if u < repaint - 1:
# RePaint: go "back" in integration via the "forward" process, by adding a little noise to x
# ...but scaled properly!
# But how to convert from original RePaint to k-diffusion? I'll try a few variants
repaint_choice = 'orig' # ['orig','var1','var2', etc...]
sigma_diff = (sigmas[i] - sigmas[i+1]).abs()
sigma_ratio = ( sigmas[i+1] / sigma_max ) # use i+1 or i?
if repaint_choice == 'orig': # attempt at original RePaint algorithm, which used betas
# if sigmas are the std devs, then betas are variances? but beta_max = 1, so how to get that? ratio?
beta = sigma_ratio**2
x = torch.sqrt(1-beta)*x + torch.sqrt(beta)*torch.randn_like(x) # this is from RePaint Paper
elif repaint_choice == 'var1': # or maybe this...? # worse than orig
x = x + sigma_diff*torch.randn_like(x)
elif repaint_choice == 'var2': # or this...? # yields NaNs
x = (1-sigma_diff)*x + sigma_diff*torch.randn_like(x)
elif repaint_choice == 'var3': # results similar to var1
x = (1.0-sigma_ratio)*x + sigmas[i+1]*torch.randn_like(x)
elif repaint_choice == 'var4': # NaNs # stealing code from elsewhere, no idea WTF I'm doing.
#Invert this: target = (input - c_skip * noised_input) / c_out, where target = model_output
x_tm1, x_t = x, old_x
# x_tm1 = ( x_0 - c_skip * noised_x0 ) / c_out
# So x_tm1*c_out = x_0 - c_skip * noised_x0
input, noise = x_tm1, torch.randn_like(x)
noised_input = input + noise * append_dims(sigma_diff, input.ndim)
c_skip, c_out, c_in = [append_dims(x, input.ndim) for x in get_scalings(sigmas[i])]
model_output = x_tm1
renoised_x = c_out * model_output + c_skip * noised_input
x = renoised_x
elif repaint_choice == 'var5':
x = torch.sqrt((1-(sigma_diff/sigma_max)**2))*x + sigma_diff*torch.randn_like(x)
# include this? guessing no.
#old_denoised = denoised
#h_last = h
old_denoised = denoised
h_last = h
old_x = x
return x
# -----from stable-audio-tools
# Define the noise schedule and sampling loop
def get_alphas_sigmas(t):
"""Returns the scaling factors for the clean image (alpha) and for the
noise (sigma), given a timestep."""
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
def alpha_sigma_to_t(alpha, sigma):
"""Returns a timestep, given the scaling factors for the clean image and for
the noise."""
return torch.atan2(sigma, alpha) / math.pi * 2
def t_to_alpha_sigma(t):
"""Returns the scaling factors for the clean image and for the noise, given
a timestep."""
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
@torch.no_grad()
def sample(model, x, steps, eta, **extra_args):
"""Draws samples from a model given starting noise. v-diffusion"""
ts = x.new_ones([x.shape[0]])
# Create the noise schedule
t = torch.linspace(1, 0, steps + 1)[:-1]
alphas, sigmas = get_alphas_sigmas(t)
# The sampling loop
for i in trange(steps):
# Get the model output (v, the predicted velocity)
with torch.cuda.amp.autocast():
v = model(x, ts * t[i], **extra_args).float()
# Predict the noise and the denoised image
pred = x * alphas[i] - v * sigmas[i]
eps = x * sigmas[i] + v * alphas[i]
# If we are not on the last timestep, compute the noisy image for the
# next timestep.
if i < steps - 1:
# If eta > 0, adjust the scaling factor for the predicted noise
# downward according to the amount of additional noise to add
ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \
(1 - alphas[i]**2 / alphas[i + 1]**2).sqrt()
adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt()
# Recombine the predicted noise and predicted denoised image in the
# correct proportions for the next step
x = pred * alphas[i + 1] + eps * adjusted_sigma
# Add the correct amount of fresh noise
if eta:
x += torch.randn_like(x) * ddim_sigma
# If we are on the last timestep, output the denoised image
return pred
# Soft mask inpainting is just shrinking hard (binary) mask inpainting
# Given a float-valued soft mask (values between 0 and 1), get the binary mask for this particular step
def get_bmask(i, steps, mask):
strength = (i+1)/(steps)
# convert to binary mask
bmask = torch.where(mask<=strength,1,0)
return bmask
def make_cond_model_fn(model, cond_fn):
def cond_model_fn(x, sigma, **kwargs):
with torch.enable_grad():
x = x.detach().requires_grad_()
denoised = model(x, sigma, **kwargs)
cond_grad = cond_fn(x, sigma, denoised=denoised, **kwargs).detach()
cond_denoised = denoised.detach() + cond_grad * K.utils.append_dims(sigma**2, x.ndim)
return cond_denoised
return cond_model_fn
# Uses k-diffusion from https://github.com/crowsonkb/k-diffusion
# init_data is init_audio as latents (if this is latent diffusion)
# For sampling, set both init_data and mask to None
# For variations, set init_data
# For inpainting, set both init_data & mask
def sample_k(
model_fn,
noise,
init_data=None,
mask=None,
steps=100,
sampler_type="dpmpp-2m-sde",
sigma_min=0.5,
sigma_max=50,
rho=1.0, device="cuda",
callback=None,
cond_fn=None,
model_config=None,
repaint=1,
**extra_args
):
#denoiser = K.external.VDenoiser(model_fn)
denoiser = K.Denoiser(model_fn, sigma_data=model_config['sigma_data'])
if cond_fn is not None:
denoiser = make_cond_model_fn(denoiser, cond_fn)
# Make the list of sigmas. Sigma values are scalars related to the amount of noise each denoising step has
#sigmas = K.sampling.get_sigmas_polyexponential(steps, sigma_min, sigma_max, rho, device=device)
sigmas = K.sampling.get_sigmas_karras(steps, sigma_min, sigma_max, rho=7., device=device)
print("sigmas[0] = ", sigmas[0])
# Scale the initial noise by sigma
noise = noise * sigmas[0]
wrapped_callback = callback
if mask is None and init_data is not None:
# VARIATION (no inpainting)
# set the initial latent to the init_data, and noise it with initial sigma
x = init_data + noise
elif mask is not None and init_data is not None:
# INPAINTING
bmask = get_bmask(0, steps, mask)
# initial noising
input_noised = init_data + noise
# set the initial latent to a mix of init_data and noise, based on step 0's binary mask
x = input_noised * bmask + noise * (1-bmask)
# define the inpainting callback function (Note: side effects, it mutates x)
# See https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py#L596C13-L596C105
# callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
# This is called immediately after `denoised = model(x, sigmas[i] * s_in, **extra_args)`
def inpainting_callback(args):
i = args["i"]
x = args["x"]
sigma = args["sigma"]
#denoised = args["denoised"]
# noise the init_data input with this step's appropriate amount of noise
input_noised = init_data + torch.randn_like(init_data) * sigma
# shrinking hard mask
bmask = get_bmask(i, steps, mask)
# mix input_noise with x, using binary mask
new_x = input_noised * bmask + x * (1-bmask)
# mutate x
x[:,:,:] = new_x[:,:,:]
# wrap together the inpainting callback and the user-submitted callback.
if callback is None:
wrapped_callback = inpainting_callback
else:
wrapped_callback = lambda args: (inpainting_callback(args), callback(args))
else:
# SAMPLING
# set the initial latent to noise
x = noise
print("sample_k: x.min, x.max = ", x.min(), x.max())
print(f"sample_k: key, val.dtype = ",[ (key, val.dtype if val is not None else val) for key,val in extra_args.items()])
with torch.cuda.amp.autocast():
if sampler_type == "k-heun":
return K.sampling.sample_heun(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-lms":
return K.sampling.sample_lms(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpmpp-2s-ancestral":
return K.sampling.sample_dpmpp_2s_ancestral(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-2":
return K.sampling.sample_dpm_2(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-fast":
return K.sampling.sample_dpm_fast(denoiser, x, sigma_min, sigma_max, steps, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-adaptive":
return K.sampling.sample_dpm_adaptive(denoiser, x, sigma_min, sigma_max, rtol=0.01, atol=0.01, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "dpmpp-2m-sde":
return K.sampling.sample_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "my-dpmpp-2m-sde":
return my_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, repaint=repaint, extra_args=extra_args)
elif sampler_type == "dpmpp-3m-sde":
return K.sampling.sample_dpmpp_3m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "my-sample-euler":
return my_sample_euler(denoiser, x, sigmas, disable=False, callback=wrapped_callback, repaint=repaint, extra_args=extra_args)
## ---- end stable-audio-tools
#@spaces.GPU
def infer_mask_from_init_img(img, mask_with='white'):
"""given an image with mask areas marked, extract the mask itself
note, this works whether image is normalized on 0..1 or -1..1, but not 0..255"""
print("Inferring mask from init_img")
assert mask_with in ['blue','white']
if not torch.is_tensor(img):
img = ToTensor()(img)
mask = torch.zeros(img.shape[-2:])
if mask_with == 'white':
mask[ (img[0,:,:]==1) & (img[1,:,:]==1) & (img[2,:,:]==1)] = 1
elif mask_with == 'blue':
mask[img[2,:,:]==1] = 1 # blue
return mask*1.0
def grow_mask(init_mask, grow_by=2):
"adds a border of grow_by pixels to the mask, by growing it grow_by times. If grow_by=0, does nothing"
new_mask = init_mask.clone()
for c in range(grow_by):
# wherever mask is bordered by a 1, set it to 1
new_mask[1:-1,1:-1] = (new_mask[1:-1,1:-1] + new_mask[0:-2,1:-1] + new_mask[2:,1:-1] + new_mask[1:-1,0:-2] + new_mask[1:-1,2:]) > 0
return new_mask
def add_seeding(init_image, init_mask, grow_by=0, seed_scale=1.0):
"adds extra noise inside mask"
init_mask = grow_mask(init_mask, grow_by=grow_by) # make the mask bigger
if not torch.is_tensor(init_image):
init_image = ToTensor()(init_image)
init_image = init_image.clone()
# wherever mask is 1, set first set init_image to min value
init_image[:,init_mask == 1] = init_image.min()
init_image = init_image + seed_scale*torch.randn_like(init_image) * (init_mask) # add noise where mask is 1
# wherever the mask is 1, set the blue channel to -1.0, otherwise leave it alone
init_image[2,:,:] = init_image[2,:,:] * (1-init_mask) - 1.0*init_mask
return init_image
def get_init_image_and_mask(args, device):
convert_tensor = transforms.ToTensor()
init_image = Image.open(args.init_image).convert('RGB')
init_image = convert_tensor(init_image)
#normalize image from 0..1 to -1..1
init_image = (2.0 * init_image) - 1.0
init_mask = torch.ones(init_image.shape[-2:]) # ones are where stuff will change, zeros will stay the same
inpaint_task = 'infer' # infer mask from init_image
assert inpaint_task in ['accomp','chords','melody','nucleation','notes','continue','infer']
if inpaint_task in ['melody','accomp']:
init_mask[0:70,:] = 0 # zero out a melody strip of image near top
init_mask[128+0:128+70,:] = 0 # zero out a melody strip of image along bottom row
if inpaint_task == 'melody':
init_mask = 1 - init_mask
elif inpaint_task in ['notes','chords']:
# keep chords only
#init_mask = torch.ones_like(x)
init_mask[0:CHORD_BORDER,:] = 0 # top row of 256x256
init_mask[128-CHORD_BORDER:128+CHORD_BORDER,:] = 0 # middle rows of 256x256
init_mask[-CHORD_BORDER:,:] = 0 # bottom row of 256x256
if inpaint_task == 'chords':
init_mask = 1 - init_mask # inverse: genereate chords given notes
elif inpaint_task == 'continue':
init_mask[0:128,:] = 0 # remember it's a square, so just mask out the bottom half
elif inpaint_task == 'nucleation':
# set mask to wherever the blue channel is >= 0.9
init_mask = (init_image[2,:,:] > 0.0)*1.0
# zero out init mask in top and bottom borders
init_mask[0:CHORD_BORDER,:] = 0
init_mask[-CHORD_BORDER:,:] = 0
init_mask[128-CHORD_BORDER:128+CHORD_BORDER,:] = 0
# remove all blue in init_image between the borders
init_image[2,CHORD_BORDER:128-CHORD_BORDER,:] = -1.0
init_image[2,128+CHORD_BORDER:-CHORD_BORDER,:] = -1.0
# grow the sides of the mask by one pixel:
# wherever mask is zero but is bordered by a 1, set it to 1
init_mask[1:-1,1:-1] = (init_mask[1:-1,1:-1] + init_mask[0:-2,1:-1] + init_mask[2:,1:-1] + init_mask[1:-1,0:-2] + init_mask[1:-1,2:]) > 0
#init_mask[1:-1,1:-1] = (init_mask[1:-1,1:-1] + init_mask[0:-2,1:-1] + init_mask[2:,1:-1] + init_mask[1:-1,0:-2] + init_mask[1:-1,2:]) > 0
elif inpaint_task == 'infer':
init_mask = infer_mask_from_init_img(init_image, mask_with='white')
# Also black out init_image wherever init mask is 1
init_image[:,init_mask == 1] = init_image.min()
if args.seed_scale > 0: # driving nucleation
print("Seeding nucleation, seed_scale = ", args.seed_scale)
init_image = add_seeding(init_image, init_mask, grow_by=0, seed_scale=args.seed_scale)
# remove any blue in middle of init image
print("init_image.shape = ", init_image.shape)
init_image[2,CHORD_BORDER:128-CHORD_BORDER,:] = -1.0
init_image[2,128+CHORD_BORDER:-CHORD_BORDER,:] = -1.0
# Debugging: output some images so we can see what's going on
init_mask_t = init_mask.float()*255 # convert mask to 0..255 for writing as image
# Convert to NumPy array and rearrange dimensions
init_mask_img_numpy = init_mask_t.byte().cpu().numpy()#.transpose(1, 2, 0)
init_mask_debug_img = Image.fromarray(init_mask_img_numpy)
init_mask_debug_img.save("init_mask_debug.png")
init_image_debug_img = Image.fromarray((init_image*127.5+127.5).byte().cpu().numpy().transpose(1,2,0))
init_image_debug_img.save("init_image_debug.png")
# reshape image and mask to be 4D tensors
init_image = init_image.unsqueeze(0).repeat(args.batch_size, 1, 1, 1)
init_mask = init_mask.unsqueeze(0).unsqueeze(1).repeat(args.batch_size,3,1,1).float()
return init_image.to(device), init_mask.to(device)
# wrapper compatible with ZeroGPU, callable from outside
#@spaces.GPU
def zero_wrapper(args, accelerator, device):
global init_image, init_mask
config = K.config.load_config(args.config if args.config else args.checkpoint)
model_config = config['model']
# TODO: allow non-square input sizes
assert len(model_config['input_size']) == 2 and model_config['input_size'][0] == model_config['input_size'][1]
size = model_config['input_size']
print('zero_wrapper: Using device:', device, flush=True)
inner_model = K.config.make_model(config).eval().requires_grad_(False).to(device)
cse = None # ChordSeqEncoder().eval().requires_grad_(False).to(device) # add chord embedding-maker to main model
if cse is not None:
inner_model.cse = cse
try:
inner_model.load_state_dict(safetorch.load_file(args.checkpoint))
except:
#ckpt = torch.load(args.checkpoint).to(device)
ckpt = torch.load(args.checkpoint, map_location='cpu')
inner_model.load_state_dict(ckpt['model'])
print('Parameters:', K.utils.n_params(inner_model))
model = K.Denoiser(inner_model, sigma_data=model_config['sigma_data'])
sigma_min = model_config['sigma_min']
sigma_max = model_config['sigma_max']
torch.set_float32_matmul_precision('high')
extra_args = {}
init_image, init_mask = None, None
if args.init_image is not None:
init_image, init_mask = get_init_image_and_mask(args, device)
init_image = init_image.to(device)
init_mask = init_mask.to(device)
@torch.no_grad()
@K.utils.eval_mode(model)
def run():
global init_image, init_mask
if accelerator.is_local_main_process:
tqdm.write('Sampling...')
sigmas = K.sampling.get_sigmas_karras(args.steps, sigma_min, sigma_max, rho=7., device=device)
def sample_fn(n, debug=True):
x = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device) * sigma_max
print("n, sigma_max, x.min, x.max = ", n, sigma_max, x.min(), x.max())
if args.init_image is not None:
init_data, mask = get_init_image_and_mask(args, device)
init_data = args.seed_scale*x*mask + (1-mask)*init_data # extra nucleation?
if cse is not None:
chord_cond = img_batch_to_seq_emb(init_data, inner_model.cse).to(device)
else:
chord_cond = None
#print("init_data.shape, init_data.min, init_data.max = ", init_data.shape, init_data.min(), init_data.max())
else:
init_data, mask, chord_cond = None, None, None
# chord_cond doesn't work anyway so f it:
chord_cond = None
print("chord_cond = ", chord_cond)
if chord_cond is not None:
extra_args['chord_cond'] = chord_cond
# these two work:
#x_0 = K.sampling.sample_lms(model, x, sigmas, disable=not accelerator.is_local_main_process, extra_args=extra_args)
#x_0 = K.sampling.sample_dpmpp_2m_sde(model, x, sigmas, disable=not accelerator.is_local_main_process, extra_args=extra_args)
noise = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device)
sampler_type="my-dpmpp-2m-sde" # "k-lms"
#sampler_type="my-sample-euler"
#sampler_type="dpmpp-2m-sde"
#sampler_type = "dpmpp-3m-sde"
#sampler_type = "k-dpmpp-2s-ancestral"
print("dtypes:", [x.dtype if x is not None else None for x in [noise, init_data, mask, chord_cond]])
x_0 = sample_k(inner_model, noise, sampler_type=sampler_type,
init_data=init_data, mask=mask, steps=args.steps,
sigma_min=sigma_min, sigma_max=sigma_max, rho=7.,
device=device, model_config=model_config, repaint=args.repaint,
**extra_args)
#x_0 = sample_k(inner_model, noise, sampler_type="dpmpp-2m-sde", steps=100, sigma_min=0.5, sigma_max=50, rho=1., device=device, model_config=model_config, **extra_args)
print("x_0.min, x_0.max = ", x_0.min(), x_0.max())
if x_0.isnan().any():
assert False, "x_0 has NaNs"
# do gpu garbage collection before proceeding
torch.cuda.empty_cache()
return x_0
x_0 = K.evaluation.compute_features(accelerator, sample_fn, lambda x: x, args.n, args.batch_size)
if accelerator.is_main_process:
for i, out in enumerate(x_0):
filename = f'{args.prefix}_{i:05}.png'
K.utils.to_pil_image(out).save(filename)
try:
run()
except KeyboardInterrupt:
pass
def main():
global init_image, init_mask
p = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
p.add_argument('--batch-size', type=int, default=64,
help='the batch size')
p.add_argument('--checkpoint', type=Path, required=True,
help='the checkpoint to use')
p.add_argument('--config', type=Path,
help='the model config')
p.add_argument('-n', type=int, default=64,
help='the number of images to sample')
p.add_argument('--prefix', type=str, default='out',
help='the output prefix')
p.add_argument('--repaint', type=int, default=1,
help='number of (re)paint steps')
p.add_argument('--steps', type=int, default=50,
help='the number of denoising steps')
p.add_argument('--seed-scale', type=float, default=0.0, help='strength of nucleation seeding')
p.add_argument('--init-image', type=Path, default=None, help='the initial image')
p.add_argument('--init-strength', type=float, default=1., help='strength of init image')
args = p.parse_args()
print("args =", args, flush=True)
config = K.config.load_config(args.config if args.config else args.checkpoint)
model_config = config['model']
# TODO: allow non-square input sizes
assert len(model_config['input_size']) == 2 and model_config['input_size'][0] == model_config['input_size'][1]
size = model_config['input_size']
accelerator = accelerate.Accelerator()
device = accelerator.device
print('Using device:', device, flush=True)
inner_model = K.config.make_model(config).eval().requires_grad_(False).to(device)
cse = None # ChordSeqEncoder().eval().requires_grad_(False).to(device) # add chord embedding-maker to main model
if cse is not None:
inner_model.cse = cse
try:
inner_model.load_state_dict(safetorch.load_file(args.checkpoint))
except:
#ckpt = torch.load(args.checkpoint).to(device)
ckpt = torch.load(args.checkpoint, map_location='cpu')
inner_model.load_state_dict(ckpt['model'])
accelerator.print('Parameters:', K.utils.n_params(inner_model))
model = K.Denoiser(inner_model, sigma_data=model_config['sigma_data'])
sigma_min = model_config['sigma_min']
sigma_max = model_config['sigma_max']
torch.set_float32_matmul_precision('high')
extra_args = {}
init_image, init_mask = None, None
if args.init_image is not None:
init_image, init_mask = get_init_image_and_mask(args, device)
init_image = init_image.to(device)
init_mask = init_mask.to(device)
@torch.no_grad()
@K.utils.eval_mode(model)
def run():
global init_image, init_mask
if accelerator.is_local_main_process:
tqdm.write('Sampling...')
sigmas = K.sampling.get_sigmas_karras(args.steps, sigma_min, sigma_max, rho=7., device=device)
def sample_fn(n, debug=True):
x = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device) * sigma_max
print("n, sigma_max, x.min, x.max = ", n, sigma_max, x.min(), x.max())
if args.init_image is not None:
init_data, mask = get_init_image_and_mask(args, device)
init_data = args.seed_scale*x*mask + (1-mask)*init_data # extra nucleation?
if cse is not None:
chord_cond = img_batch_to_seq_emb(init_data, inner_model.cse).to(device)
else:
chord_cond = None
#print("init_data.shape, init_data.min, init_data.max = ", init_data.shape, init_data.min(), init_data.max())
else:
init_data, mask, chord_cond = None, None, None
# chord_cond doesn't work anyway so f it:
chord_cond = None
print("chord_cond = ", chord_cond)
if chord_cond is not None:
extra_args['chord_cond'] = chord_cond
# these two work:
#x_0 = K.sampling.sample_lms(model, x, sigmas, disable=not accelerator.is_local_main_process, extra_args=extra_args)
#x_0 = K.sampling.sample_dpmpp_2m_sde(model, x, sigmas, disable=not accelerator.is_local_main_process, extra_args=extra_args)
noise = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device)
sampler_type="my-dpmpp-2m-sde" # "k-lms"
#sampler_type="my-sample-euler"
#sampler_type="dpmpp-2m-sde"
#sampler_type = "dpmpp-3m-sde"
#sampler_type = "k-dpmpp-2s-ancestral"
print("dtypes:", [x.dtype if x is not None else None for x in [noise, init_data, mask, chord_cond]])
x_0 = sample_k(inner_model, noise, sampler_type=sampler_type,
init_data=init_data, mask=mask, steps=args.steps,
sigma_min=sigma_min, sigma_max=sigma_max, rho=7.,
device=device, model_config=model_config, repaint=args.repaint,
**extra_args)
#x_0 = sample_k(inner_model, noise, sampler_type="dpmpp-2m-sde", steps=100, sigma_min=0.5, sigma_max=50, rho=1., device=device, model_config=model_config, **extra_args)
print("x_0.min, x_0.max = ", x_0.min(), x_0.max())
if x_0.isnan().any():
assert False, "x_0 has NaNs"
# do gpu garbage collection before proceeding
torch.cuda.empty_cache()
return x_0
x_0 = K.evaluation.compute_features(accelerator, sample_fn, lambda x: x, args.n, args.batch_size)
if accelerator.is_main_process:
for i, out in enumerate(x_0):
filename = f'{args.prefix}_{i:05}.png'
K.utils.to_pil_image(out).save(filename)
try:
run()
except KeyboardInterrupt:
pass
if __name__ == '__main__':
main()