PicturesOfMIDI / app.py
drscotthawley's picture
more code full gui
3cf4680
raw
history blame
6.57 kB
# imports from gradio_demo.py
import gradio as gr
import numpy as np
from PIL import Image
import torch
from torchvision.transforms import ToTensor, ToPILImage
import sys
import os
from midi_player import MIDIPlayer
from midi_player.stylers import basic, cifka_advanced, dark
import numpy as np
from time import sleep
from subprocess import call
import pandas as pd
# imports from sample.py
import argparse
from pathlib import Path
import accelerate
import safetensors.torch as safetorch
#import torch
from tqdm import trange, tqdm
#from PIL import Image
from torchvision import transforms
import k_diffusion as K
from .pianoroll import regroup_lines, img_file_2_midi_file, square_to_rect, rect_to_square
from .square_to_rect import square_to_rect
def infer_mask_from_init_img(img, mask_with='grey'):
"note, this works whether image is normalized on 0..1 or -1..1, but not 0..255"
assert mask_with in ['blue','white','grey']
"given an image with mask areas marked, extract the mask itself"
if not torch.is_tensor(img):
img = ToTensor()(img)
print("img.shape: ", img.shape)
# shape of mask should be img shape without the channel dimension
if len(img.shape) == 3:
mask = torch.zeros(img.shape[-2:])
elif len(img.shape) == 2:
mask = torch.zeros(img.shape)
print("mask.shape: ", mask.shape)
if mask_with == 'white':
mask[ (img[0,:,:]==1) & (img[1,:,:]==1) & (img[2,:,:]==1)] = 1
elif mask_with == 'blue':
mask[img[2,:,:]==1] = 1 # blue
if mask_with == 'grey':
mask[ (img[0,:,:] != 0) & (img[0,:,:]==img[1,:,:]) & (img[2,:,:]==img[1,:,:])] = 1
return mask*1.0
def count_notes_in_mask(img, mask):
"counts the number of new notes in the mask"
img_t = ToTensor()(img)
new_notes = (mask * (img_t[1,:,:] > 0)).sum() # green channel
return new_notes.item()
def grab_dense_gen(init_img,
PREFIX,
num_to_gen=64,
busyness=100, # after ranking images by how many notes were in mask, which one should we grab?
):
df = None
mask = infer_mask_from_init_img(init_img, mask_with='grey')
for num in range(num_to_gen):
filename = f'{PREFIX}_{num:05d}.png'
gen_img = Image.open(filename)
gen_img_rect = square_to_rect(gen_img)
new_notes = count_notes_in_mask(gen_img, mask)
if df is None:
df = pd.DataFrame([[filename, new_notes, gen_img_rect]], columns=['filename', 'new_notes', 'img_rect'])
else:
df = pd.concat([df, pd.DataFrame([[filename, new_notes, gen_img_rect]], columns=['filename', 'new_notes', 'img_rect'])], ignore_index=True)
# sort df by new_notes column,
df = df.sort_values(by='new_notes', ascending=True)
grab_index = (len(df)-1)*busyness//100
print("grab_index = ", grab_index)
dense_filename = df.iloc[grab_index]['filename']
print("Grabbing filename = ", dense_filename)
return dense_filename
def process_image(image, repaint, busyness):
# get image ready and execute sampler
print("image = ",image)
image = image['composite']
# if image is a numpy array convert to PIL
if isinstance(image, np.ndarray):
image = ToPILImage()(image)
image = image.convert("RGB").crop((0, 0, 512, 128))
image = rect_to_square( image )
#mask = infer_mask_from_init_img( image )
masked_img_file = 'gradio_masked_image.png' # TODO: could allow for clobber at scale
print("Saving masked image file to ", masked_img_file)
image.save(masked_img_file)
num = 64 # number of images to generate; we'll take the one with the most notes in the masked region
bs = num
repaint = repaint
seed_scale = 1.0
DEVICES = 'CUDA_VISIBLE_DEVICES=3'
USER = 'shawley'
RUN_HOME = f'/runs/{USER}/k-diffusion/pop909/full_chords'
CKPT = f'{RUN_HOME}/256_chords_00130000.pth'
PREFIX = 'gradiodemo'
# !echo {DEVICES} {CT_HOME} {CKPT} {PREFIX} {masked_img_file}
print("Reading init image from ", masked_img_file,", repaint = ",repaint)
cmd = f'/home/shawley/envs/hs/bin/python {CT_HOME}/sample.py --batch-size {bs} --checkpoint {CKPT} --config {CT_HOME}/configs/config_pop909_256x256_chords.json -n {num} --prefix {PREFIX} --init-image {masked_img_file} --steps=100 --repaint={repaint}'
print("Will run command: ", cmd)
args = cmd.split(' ')
#call(cmd, shell=True)
print("Calling: ", args)
return_value = call(args)
print("Return value = ", return_value)
# find gen'd image and convert to midi piano roll
#gen_file = f'{PREFIX}_00000.png'
gen_file = grab_dense_gen(image, PREFIX, num_to_gen=num)
gen_image = square_to_rect(Image.open(gen_file))
midi_file = img_file_2_midi_file(gen_file)
srcdoc = MIDIPlayer(midi_file, 300, styler=dark).html
srcdoc = srcdoc.replace("\"", "'")
html = f'''<iframe srcdoc="{srcdoc}" height="500" width="100%" title="Iframe Example"></iframe>'''
# convert the midi to audio too
audio_file = 'gradio_demo_out.mp3'
cmd = f'timidity {midi_file} -Ow -o {audio_file}'
print("Converting midi to audio with: ", cmd)
return_value = call(cmd.split(' '))
print("Return value = ", return_value)
return gen_image, html, audio_file
# def greet(name):
# return "Hello " + name + "!!"
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
# demo.launch()
demo = gr.Interface(fn=process_image,
inputs=[gr.ImageEditor(sources=["upload",'clipboard'], label="Input Piano Roll Image (White = Gen Notes Here)", value=make_dict('all_black.png'), brush=gr.Brush(colors=["#FFFFFF","#000000"])),
gr.Slider(minimum=1, maximum=10, step=1, value=2, label="RePaint (Larger = More Notes, But Crazier. Also Slower.)"),
gr.Slider(minimum=1, maximum=100, step=1, value=100, label="Busy-ness Percentile (Based on Notes Generated)")],
outputs=[gr.Image(width=512, height=128, label='Generated Piano Roll Image'),
gr.HTML(label="MIDI Player"),
gr.Audio(label="MIDI as Audio")],
examples= [[make_dict(y),1,100] for y in ['all_white.png','all_black.png','init_img_melody.png','init_img_accomp.png','init_img_cont.png',]]+
[[make_dict(x),2,100] for x in ['584_TOTAL_crop.png', '780_TOTAL_crop_bg.png', '780_TOTAL_crop_draw.png','loop_middle_2.png']]+
[[make_dict(z),3,100] for z in ['584_TOTAL_crop_draw.png','loop_middle.png']] +
[[make_dict('ismir_mask_2.png'),6,100]],
)
demo.queue().launch()