File size: 7,296 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

"""Encoding Data Parallel"""
import threading
import functools
import torch
from torch.autograd import Variable, Function
import torch.cuda.comm as comm
from torch.nn.parallel.data_parallel import DataParallel
from torch.nn.parallel.parallel_apply import get_a_var
from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast

torch_ver = torch.__version__[:3]

__all__ = ['allreduce', 'DataParallelModel', 'DataParallelCriterion', 'patch_replication_callback']

def allreduce(*inputs):
    """Cross GPU all reduce autograd operation for calculate mean and
    variance in SyncBN.
    """
    return AllReduce.apply(*inputs)

class AllReduce(Function):
    @staticmethod
    def forward(ctx, num_inputs, *inputs):
        ctx.num_inputs = num_inputs
        ctx.target_gpus = [inputs[i].get_device() for i in range(0, len(inputs), num_inputs)]
        inputs = [inputs[i:i + num_inputs]
                 for i in range(0, len(inputs), num_inputs)]
        # sort before reduce sum
        inputs = sorted(inputs, key=lambda i: i[0].get_device())
        results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0])
        outputs = comm.broadcast_coalesced(results, ctx.target_gpus)
        return tuple([t for tensors in outputs for t in tensors])

    @staticmethod
    def backward(ctx, *inputs):
        inputs = [i.data for i in inputs]
        inputs = [inputs[i:i + ctx.num_inputs]
                 for i in range(0, len(inputs), ctx.num_inputs)]
        results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0])
        outputs = comm.broadcast_coalesced(results, ctx.target_gpus)
        return (None,) + tuple([Variable(t) for tensors in outputs for t in tensors])

class Reduce(Function):
    @staticmethod
    def forward(ctx, *inputs):
        ctx.target_gpus = [inputs[i].get_device() for i in range(len(inputs))]
        inputs = sorted(inputs, key=lambda i: i.get_device())
        return comm.reduce_add(inputs)

    @staticmethod
    def backward(ctx, gradOutput):
        return Broadcast.apply(ctx.target_gpus, gradOutput)


class DataParallelModel(DataParallel):
    """Implements data parallelism at the module level.

    This container parallelizes the application of the given module by
    splitting the input across the specified devices by chunking in the
    batch dimension.
    In the forward pass, the module is replicated on each device,
    and each replica handles a portion of the input. During the backwards pass, gradients from each replica are summed into the original module.
    Note that the outputs are not gathered, please use compatible
    :class:`encoding.parallel.DataParallelCriterion`.

    The batch size should be larger than the number of GPUs used. It should
    also be an integer multiple of the number of GPUs so that each chunk is
    the same size (so that each GPU processes the same number of samples).

    Args:
        module: module to be parallelized
        device_ids: CUDA devices (default: all devices)

    Reference:
        Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi,
        Amit Agrawal. β€œContext Encoding for Semantic Segmentation.
        *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*

    Example::

        >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2])
        >>> y = net(x)
    """
    def gather(self, outputs, output_device):
        return outputs

    def replicate(self, module, device_ids):
        modules = super(DataParallelModel, self).replicate(module, device_ids)
        return modules


class DataParallelCriterion(DataParallel):
    """
    Calculate loss in multiple-GPUs, which balance the memory usage for
    Semantic Segmentation.

    The targets are splitted across the specified devices by chunking in
    the batch dimension. Please use together with :class:`encoding.parallel.DataParallelModel`.

    Reference:
        Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi,
        Amit Agrawal. β€œContext Encoding for Semantic Segmentation.
        *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*

    Example::

        >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2])
        >>> criterion = encoding.nn.DataParallelCriterion(criterion, device_ids=[0, 1, 2])
        >>> y = net(x)
        >>> loss = criterion(y, target)
    """
    def forward(self, inputs, *targets, **kwargs):
        # input should be already scatterd
        # scattering the targets instead
        if not self.device_ids:
            return self.module(inputs, *targets, **kwargs)
        targets, kwargs = self.scatter(targets, kwargs, self.device_ids)
        if len(self.device_ids) == 1:
            return self.module(inputs, *targets[0], **kwargs[0])
        replicas = self.replicate(self.module, self.device_ids[:len(inputs)])
        outputs = _criterion_parallel_apply(replicas, inputs, targets, kwargs)
        return Reduce.apply(*outputs) / len(outputs)


def _criterion_parallel_apply(modules, inputs, targets, kwargs_tup=None, devices=None):
    assert len(modules) == len(inputs)
    assert len(targets) == len(inputs)
    if kwargs_tup:
        assert len(modules) == len(kwargs_tup)
    else:
        kwargs_tup = ({},) * len(modules)
    if devices is not None:
        assert len(modules) == len(devices)
    else:
        devices = [None] * len(modules)

    lock = threading.Lock()
    results = {}
    if torch_ver != "0.3":
        grad_enabled = torch.is_grad_enabled()

    def _worker(i, module, input, target, kwargs, device=None):
        if torch_ver != "0.3":
            torch.set_grad_enabled(grad_enabled)
        if device is None:
            device = get_a_var(input).get_device()
        try:
            if not isinstance(input, tuple):
                input = (input,)
            with torch.cuda.device(device):
                output = module(*(input + target), **kwargs)
            with lock:
                results[i] = output
        except Exception as e:
            with lock:
                results[i] = e

    if len(modules) > 1:
        threads = [threading.Thread(target=_worker,
                                    args=(i, module, input, target,
                                          kwargs, device),)
                   for i, (module, input, target, kwargs, device) in
                   enumerate(zip(modules, inputs, targets, kwargs_tup, devices))]

        for thread in threads:
            thread.start()
        for thread in threads:
            thread.join()
    else:
        _worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0])

    outputs = []
    for i in range(len(inputs)):
        output = results[i]
        if isinstance(output, Exception):
            raise output
        outputs.append(output)
    return outputs