MooMoo-VTON / densepose /data /samplers /densepose_cse_base.py
IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
5.4 kB
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Any, Dict, List, Tuple
import torch
from torch.nn import functional as F
from detectron2.config import CfgNode
from detectron2.structures import Instances
from densepose.converters.base import IntTupleBox
from densepose.data.utils import get_class_to_mesh_name_mapping
from densepose.modeling.cse.utils import squared_euclidean_distance_matrix
from densepose.structures import DensePoseDataRelative
from .densepose_base import DensePoseBaseSampler
class DensePoseCSEBaseSampler(DensePoseBaseSampler):
"""
Base DensePose sampler to produce DensePose data from DensePose predictions.
Samples for each class are drawn according to some distribution over all pixels estimated
to belong to that class.
"""
def __init__(
self,
cfg: CfgNode,
use_gt_categories: bool,
embedder: torch.nn.Module,
count_per_class: int = 8,
):
"""
Constructor
Args:
cfg (CfgNode): the config of the model
embedder (torch.nn.Module): necessary to compute mesh vertex embeddings
count_per_class (int): the sampler produces at most `count_per_class`
samples for each category
"""
super().__init__(count_per_class)
self.embedder = embedder
self.class_to_mesh_name = get_class_to_mesh_name_mapping(cfg)
self.use_gt_categories = use_gt_categories
def _sample(self, instance: Instances, bbox_xywh: IntTupleBox) -> Dict[str, List[Any]]:
"""
Sample DensPoseDataRelative from estimation results
"""
if self.use_gt_categories:
instance_class = instance.dataset_classes.tolist()[0]
else:
instance_class = instance.pred_classes.tolist()[0]
mesh_name = self.class_to_mesh_name[instance_class]
annotation = {
DensePoseDataRelative.X_KEY: [],
DensePoseDataRelative.Y_KEY: [],
DensePoseDataRelative.VERTEX_IDS_KEY: [],
DensePoseDataRelative.MESH_NAME_KEY: mesh_name,
}
mask, embeddings, other_values = self._produce_mask_and_results(instance, bbox_xywh)
indices = torch.nonzero(mask, as_tuple=True)
selected_embeddings = embeddings.permute(1, 2, 0)[indices].cpu()
values = other_values[:, indices[0], indices[1]]
k = values.shape[1]
count = min(self.count_per_class, k)
if count <= 0:
return annotation
index_sample = self._produce_index_sample(values, count)
closest_vertices = squared_euclidean_distance_matrix(
selected_embeddings[index_sample], self.embedder(mesh_name)
)
closest_vertices = torch.argmin(closest_vertices, dim=1)
sampled_y = indices[0][index_sample] + 0.5
sampled_x = indices[1][index_sample] + 0.5
# prepare / normalize data
_, _, w, h = bbox_xywh
x = (sampled_x / w * 256.0).cpu().tolist()
y = (sampled_y / h * 256.0).cpu().tolist()
# extend annotations
annotation[DensePoseDataRelative.X_KEY].extend(x)
annotation[DensePoseDataRelative.Y_KEY].extend(y)
annotation[DensePoseDataRelative.VERTEX_IDS_KEY].extend(closest_vertices.cpu().tolist())
return annotation
def _produce_mask_and_results(
self, instance: Instances, bbox_xywh: IntTupleBox
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Method to get labels and DensePose results from an instance
Args:
instance (Instances): an instance of `DensePoseEmbeddingPredictorOutput`
bbox_xywh (IntTupleBox): the corresponding bounding box
Return:
mask (torch.Tensor): shape [H, W], DensePose segmentation mask
embeddings (Tuple[torch.Tensor]): a tensor of shape [D, H, W],
DensePose CSE Embeddings
other_values (Tuple[torch.Tensor]): a tensor of shape [0, H, W],
for potential other values
"""
densepose_output = instance.pred_densepose
S = densepose_output.coarse_segm
E = densepose_output.embedding
_, _, w, h = bbox_xywh
embeddings = F.interpolate(E, size=(h, w), mode="bilinear")[0]
coarse_segm_resized = F.interpolate(S, size=(h, w), mode="bilinear")[0]
mask = coarse_segm_resized.argmax(0) > 0
other_values = torch.empty((0, h, w), device=E.device)
return mask, embeddings, other_values
def _resample_mask(self, output: Any) -> torch.Tensor:
"""
Convert DensePose predictor output to segmentation annotation - tensors of size
(256, 256) and type `int64`.
Args:
output: DensePose predictor output with the following attributes:
- coarse_segm: tensor of size [N, D, H, W] with unnormalized coarse
segmentation scores
Return:
Tensor of size (S, S) and type `int64` with coarse segmentation annotations,
where S = DensePoseDataRelative.MASK_SIZE
"""
sz = DensePoseDataRelative.MASK_SIZE
mask = (
F.interpolate(output.coarse_segm, (sz, sz), mode="bilinear", align_corners=False)
.argmax(dim=1)
.long()
.squeeze()
.cpu()
)
return mask