File size: 5,691 Bytes
4913d8e
b3b6e78
 
4913d8e
ec4ad71
22fa11a
ec4ad71
ee88ea4
7ea551a
ee88ea4
7ea551a
ee88ea4
 
7ea551a
4913d8e
fc6dfba
 
 
4913d8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b91fc8
4913d8e
 
 
 
 
 
 
 
 
 
 
 
 
b3b6e78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4913d8e
b3b6e78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4913d8e
7ea551a
b3b6e78
 
 
ec4ad71
 
 
 
 
 
 
3b91fc8
ec4ad71
 
 
 
 
 
3b91fc8
ec4ad71
 
 
 
 
ec2ed74
ec4ad71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3de8992
de0d30c
ec4ad71
7ea551a
 
 
de0d30c
7ea551a
 
 
de0d30c
 
 
 
 
 
 
 
 
7ea551a
 
 
de0d30c
 
b3b6e78
 
de0d30c
b3b6e78
 
 
 
ec4ad71
b3b6e78
4913d8e
 
 
7bcfcfb
b3b6e78
4913d8e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import os
import shutil
import yaml
import tempfile
import huggingface_hub
import subprocess
import threading
from tqdm import tqdm

def stream_output(pipe, progress_bar):
    for line in iter(pipe.readline, ''):
        print(line, end='')
        progress_bar.update(1)

HF_TKN = os.environ.get("GATED_HF_TOKEN")
huggingface_hub.login(token=HF_TKN)

huggingface_hub.hf_hub_download(
    repo_id='yzd-v/DWPose',
    filename='yolox_l.onnx',
    local_dir='./models/DWPose',
    local_dir_use_symlinks=False,
)

huggingface_hub.hf_hub_download(
    repo_id='yzd-v/DWPose',
    filename='dw-ll_ucoco_384.onnx',
    local_dir='./models/DWPose',
    local_dir_use_symlinks=False,
)

huggingface_hub.hf_hub_download(
    repo_id='ixaac/MimicMotion',
    filename='MimicMotion_1.pth',
    local_dir='./models',
    local_dir_use_symlinks=False,
)

def print_directory_contents(path):
    for root, dirs, files in os.walk(path):
        level = root.replace(path, '').count(os.sep)
        indent = ' ' * 4 * (level)
        print(f"{indent}{os.path.basename(root)}/")
        subindent = ' ' * 4 * (level + 1)
        for f in files:
            print(f"{subindent}{f}")

def check_outputs_folder(folder_path):
    # Check if the folder exists
    if os.path.exists(folder_path) and os.path.isdir(folder_path):
        # Delete all contents inside the folder
        for filename in os.listdir(folder_path):
            file_path = os.path.join(folder_path, filename)
            try:
                if os.path.isfile(file_path) or os.path.islink(file_path):
                    os.unlink(file_path)  # Remove file or link
                elif os.path.isdir(file_path):
                    shutil.rmtree(file_path)  # Remove directory
            except Exception as e:
                print(f'Failed to delete {file_path}. Reason: {e}')
    else:
        print(f'The folder {folder_path} does not exist.')

def check_for_mp4_in_outputs():
    # Define the path to the outputs folder
    outputs_folder = './outputs'
    
    # Check if the outputs folder exists
    if not os.path.exists(outputs_folder):
        return None
    
    # Check if there is a .mp4 file in the outputs folder
    mp4_files = [f for f in os.listdir(outputs_folder) if f.endswith('.mp4')]
    
    # Return the path to the mp4 file if it exists
    if mp4_files:
        return os.path.join(outputs_folder, mp4_files[0])
    else:
        return None

def infer(ref_video_in, ref_image_in, progress=gr.Progress(track_tqdm=True)):
    # check if 'outputs' dir exists and empty it if necessary
    check_outputs_folder('./outputs')
    
    # Create a temporary directory
    with tempfile.TemporaryDirectory() as temp_dir:
        print("Temporary directory created:", temp_dir)
    
        # Define the values for the variables
        ref_video_path = ref_video_in
        ref_image_path = ref_image_in
        num_frames = 16
        resolution = 576
        frames_overlap = 6
        num_inference_steps = 25
        noise_aug_strength = 0
        guidance_scale = 2.0
        sample_stride = 2
        fps = 12
        seed = 42
    
        # Create the data structure
        data = {
            'base_model_path': 'stabilityai/stable-video-diffusion-img2vid-xt-1-1',
            'ckpt_path': 'models/MimicMotion_1.pth',
            'test_case': [
                {
                    'ref_video_path': ref_video_path,
                    'ref_image_path': ref_image_path,
                    'num_frames': num_frames,
                    'resolution': resolution,
                    'frames_overlap': frames_overlap,
                    'num_inference_steps': num_inference_steps,
                    'noise_aug_strength': noise_aug_strength,
                    'guidance_scale': guidance_scale,
                    'sample_stride': sample_stride,
                    'fps': fps,
                    'seed': seed
                }
            ]
        }
    
        # Define the file path
        file_path = os.path.join(temp_dir, 'config.yaml')
    
        # Write the data to a YAML file
        with open(file_path, 'w') as file:
            yaml.dump(data, file, default_flow_style=False)
    
        print("YAML file 'config.yaml' created successfully in", file_path)

        # Execute the inference command
        command = ['python', 'inference.py', '--inference_config', file_path]
        process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1)
    
        # Create a tqdm progress bar
        progress_bar = tqdm(total=100, desc="Inference Progress", unit="line", ncols=100)
    
        # Create threads to handle stdout and stderr
        stdout_thread = threading.Thread(target=stream_output, args=(process.stdout, progress_bar))
        stderr_thread = threading.Thread(target=stream_output, args=(process.stderr, progress_bar))

    
        # Start the threads
        stdout_thread.start()
        stderr_thread.start()
    
        # Wait for the process to complete and the threads to finish
        process.wait()
        stdout_thread.join()
        stderr_thread.join()

        # Close the progress bar
        progress_bar.close()
    
        print("Inference script finished with return code:", process.returncode)
        
        # Print the outputs directory contents
        print_directory_contents('./outputs')

    # Call the function and print the result
    mp4_file_path = check_for_mp4_in_outputs()
    print(mp4_file_path)
    
    return mp4_file_path

demo = gr.Interface(
    fn = infer,
    inputs = [gr.Video(), gr.Image(type="filepath")],
    outputs = [gr.Video()]
)

demo.launch()