# coding=utf-8 # Copyright 2023 The GlotLID Authors. # Lint as: python3 # This space is built based on AMR-KELEG/ALDi space. # GlotLID Space import constants import pandas as pd import streamlit as st from huggingface_hub import hf_hub_download from GlotScript import get_script_predictor import matplotlib.pyplot as plt import fasttext import altair as alt from altair import X, Y, Scale import base64 import json @st.cache_resource def load_sp(): sp = get_script_predictor() return sp sp = load_sp() def get_script(text): """Get the writing systems of given text. Args: text: The text to be preprocessed. Returns: The main script and list of all scripts. """ res = sp(text) main_script = res[0] if res[0] else 'Zyyy' all_scripts_dict = res[2]['details'] if all_scripts_dict: all_scripts = list(all_scripts_dict.keys()) else: all_scripts = 'Zyyy' return main_script, all_scripts @st.cache_data def language_names(json_path): with open(json_path, 'r') as json_file: data = json.load(json_file) return data label2name = language_names("assets/language_names.json") def get_name(label): """Get the name of language from label""" iso_3 = label.split('_')[0] name = label2name[iso_3] return name @st.cache_data def render_svg(svg): """Renders the given svg string.""" b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8") html = rf'

' c = st.container() c.write(html, unsafe_allow_html=True) @st.cache_data def convert_df(df): # IMPORTANT: Cache the conversion to prevent computation on every rerun return df.to_csv(index=None).encode("utf-8") @st.cache_resource def load_GlotLID_v1(model_name, file_name): model_path = hf_hub_download(repo_id=model_name, filename=file_name) model = fasttext.load_model(model_path) return model @st.cache_resource def load_GlotLID_v2(model_name, file_name): model_path = hf_hub_download(repo_id=model_name, filename=file_name) model = fasttext.load_model(model_path) return model model_1 = load_GlotLID_v1(constants.MODEL_NAME, "model_v1.bin") model_2 = load_GlotLID_v2(constants.MODEL_NAME, "model_v2.bin") @st.cache_resource def plot(label, prob): ORANGE_COLOR = "#FF8000" fig, ax = plt.subplots(figsize=(8, 1)) fig.patch.set_facecolor("none") ax.set_facecolor("none") ax.spines["left"].set_color(ORANGE_COLOR) ax.spines["bottom"].set_color(ORANGE_COLOR) ax.tick_params(axis="x", colors=ORANGE_COLOR) ax.spines[["right", "top"]].set_visible(False) ax.barh(y=[0], width=[prob], color=ORANGE_COLOR) ax.set_xlim(0, 1) ax.set_ylim(-1, 1) ax.set_title(f"Label: {label}, Language: {get_name(label)}", color=ORANGE_COLOR) ax.get_yaxis().set_visible(False) ax.set_xlabel("Confidence", color=ORANGE_COLOR) st.pyplot(fig) def compute(sentences, version = 'v2'): """Computes the language probablities and labels for the given sentences. Args: sentences: A list of sentences. Returns: A list of language probablities and labels for the given sentences. """ progress_text = "Computing Language..." model_choice = model_2 if version == 'v2' else model_1 my_bar = st.progress(0, text=progress_text) probs = [] labels = [] for index, sent in enumerate(sentences): output = model_choice.predict(sent) output_label = output[0][0].split('__')[-1] output_prob = max(min(output[1][0], 1), 0) output_label_language = output_label.split('_')[0] # script control if version in ['v2'] and output_label_language!= 'zxx': main_script, all_scripts = get_script(sent) output_label_script = output_label.split('_')[1] if output_label_script not in all_scripts: output_label_script = main_script output_label = f"und_{output_label_script}" output_prob = 0 labels = labels + [output_label] probs = probs + [output_prob] my_bar.progress( min((index) / len(sentences), 1), text=progress_text, ) my_bar.empty() return probs, labels st.markdown("[![Duplicate Space](https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14)](https://huggingface.co/spaces/cis-lmu/glotlid-space?duplicate=true)") render_svg(open("assets/GlotLID_logo.svg").read()) tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"]) with tab1: # choice = st.radio( # "Set granularity level", # ["default", "merge", "individual"], # captions=["enable both macrolanguage and its varieties (default)", "merge macrolanguage and its varieties into one label", "remove macrolanguages - only shows individual langauges"], # ) version = st.radio( "Choose model", ["v1", "v2"], captions=["GlotLID version 1", "GlotLID version 2 (more data and languages)"], index = 1, key = 'version_tab1', horizontal = True ) sent = st.text_input( "Sentence:", placeholder="Enter a sentence.", on_change=None ) # TODO: Check if this is needed! clicked = st.button("Submit") if sent: sent = sent.replace('\n', '') probs, labels = compute([sent], version=version) prob = probs[0] label = labels[0] # plot plot(label, prob) print(sent) with open("logs.txt", "a") as f: f.write(sent + "\n") with tab2: version = st.radio( "Choose model", ["v1", "v2"], captions=["GlotLID version 1", "GlotLID version 2 (more data and languages)"], index = 1, key = 'version_tab2', horizontal = True ) file = st.file_uploader("Upload a file", type=["txt"]) if file is not None: df = pd.read_csv(file, sep="¦\t¦", header=None) df.columns = ["Sentence"] df.reset_index(drop=True, inplace=True) # TODO: Run the model df['Prob'], df["Label"] = compute(df["Sentence"].tolist(), version= version) df['Language'] = df["Label"].apply(get_name) # A horizontal rule st.markdown("""---""") chart = ( alt.Chart(df.reset_index()) .mark_area(color="darkorange", opacity=0.5) .encode( x=X(field="index", title="Sentence Index"), y=Y("Prob", scale=Scale(domain=[0, 1])), ) ) st.altair_chart(chart.interactive(), use_container_width=True) col1, col2 = st.columns([4, 1]) with col1: # Display the output st.table( df, ) with col2: # Add a download button csv = convert_df(df) st.download_button( label=":file_folder: Download predictions as CSV", data=csv, file_name="GlotLID.csv", mime="text/csv", )