Spaces:
Runtime error
Runtime error
File size: 1,177 Bytes
0a271b1 d0c5d85 0a271b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("ncoop57/DiGPTame-medium")
model = AutoModelForCausalLM.from_pretrained("ncoop57/DiGPTame-medium")
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
# convert the tokens to text, and then split the responses into the right format
response = tokenizer.decode(history[0]).split("<|endoftext|>")
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
return response, history
import gradio as gr
gr.Interface(fn=predict,
theme="default",
css=".footer {display:none !important}",
inputs=["text", "state"],
outputs=["chatbot", "state"]).launch() |