Spaces:
Paused
Paused
File size: 2,264 Bytes
8dc7e9f 080fddd 5669f53 d1a3943 5669f53 c00bb17 03b394c c00bb17 5669f53 c00bb17 5669f53 c00bb17 5669f53 c00bb17 c2ea10b c00bb17 c2ea10b 5669f53 c00bb17 080fddd c00bb17 080fddd c00bb17 5669f53 c2ea10b 5669f53 441fdf4 5669f53 c00bb17 c2ea10b 5669f53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
from llama_index import Prompt, SimpleDirectoryReader, LLMPredictor, PromptHelper, StorageContext, ServiceContext, GPTVectorStoreIndex, load_index_from_storage
from llama_index.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
import gradio as gr
import sys
import os
os.environ["OPENAI_API_KEY"]
def construct_index(directory_path):
# setup parameters
max_input_size = 4096
num_outputs = 512
max_chunk_overlap = 20
chunk_size_limit = 600
# create a prompt helper
prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)
# initialize the predictor with a fine-tuned model
llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0.9, model_name="gpt-3.5-turbo", max_tokens=num_outputs))
# load documents from the specified directory
documents = SimpleDirectoryReader(directory_path).load_data()
# construct the index
index = GPTVectorStoreIndex(documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper)
# save the index to disk
index.storage_context.persist(persist_dir="index.json")
return index
def chatbot(input_text):
# load the index from disk
index = GPTVectorStoreIndex.load_from_disk('index.json')
# define custom Prompt
TEMPLATE_STR = (
"Quiero que actues como un asistente personal de un cliente del Banco Galicia. Tu nombre es Gala. Me brindas información sobre mi resument de tarjeta de credito VISA. Si la respuesta no esta en el documento, respondeme de forma creativa que no lo sabes, pero que podes ayudarme con otra pregunta. Nunca te enojes y no contestes preguntas politicas o religiosas. \n"
"---------------------\n"
"Dado esto, por favor responde a la pregunta: {input_text}\n"
)
QA_TEMPLATE = PromptTemplate(TEMPLATE_STR)
# query the index and get the response
response = query_engine.query(QA_TEMPLATE)
return response.response
iface = gr.Interface(fn=chatbot,
inputs=gr.components.Textbox(lines=7, label="Ingresa tu pregunta"),
outputs="text",
title="Demo Galicia")
# construct the index
index = construct_index("docs")
iface.launch(share=True, debug=True) |