from llama_index import SimpleDirectoryReader, LLMPredictor, PromptHelper, StorageContext, ServiceContext, GPTVectorStoreIndex, load_index_from_storage from langchain.chat_models import ChatOpenAI import gradio as gr import sys import os #from langchain.chat_models import ChatOpenAI os.environ["OPENAI_API_KEY"] def construct_index(directory_path): max_input_size = 4096 num_outputs = 512 max_chunk_overlap = 0.2 chunk_size_limit = 600 prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit) llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=1.0, model_name="gpt-4", max_tokens=num_outputs)) documents = SimpleDirectoryReader(directory_path).load_data() index = GPTVectorStoreIndex(documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper) #index.save_to_disk('index.json') index.storage_context.persist(persist_dir="index.json") return index def chatbot(input_text): #query_engine = index.as_query_engine() index = GPTVectorStoreIndex.load_from_disk('index.json') response = index.query(input_text, response_mode="compact") return response.response iface = gr.Interface(fn=chatbot, inputs=gr.components.Textbox(lines=7, label="Ingrese su pregunta"), outputs="text", title="Demo Galicia") index = construct_index("docs") iface.launch(share=True, debug=True)