File size: 30,146 Bytes
d74b4aa db3c665 d74b4aa db3c665 d74b4aa ff30d46 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 d74b4aa db3c665 7c557a7 d74b4aa db3c665 d74b4aa a557fdc 2bd7a16 a557fdc d74b4aa ff30d46 d74b4aa 2bd7a16 d74b4aa 2bd7a16 d74b4aa d2453a6 d74b4aa 1cdedda d74b4aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 |
# [BEGIN OF pluto_happy]
# [BEGIN OF pluto_happy]
# required pip install
import pynvml # for GPU info
## standard libs, no need to install
import numpy
import PIL
import pandas
import matplotlib
import torch
# standard libs (system)
import json
import time
import os
import random
import re
import sys
import psutil
import socket
import importlib.metadata
import types
import cpuinfo
import pathlib
import subprocess
import fastai
# define class Pluto_Happy
class Pluto_Happy(object):
"""
The Pluto projects starts with fun AI hackings and become a part of my
first book "Data Augmentation with Python" with Packt Publishing.
In particular, Pluto_Happy is a clean and lite kernel of a simple class,
and using @add_module decoractor to add in specific methods to be a new class,
such as Pluto_HFace with a lot more function on HuggingFace, LLM and Transformers.
Args:
name (str): the display name, e.g. "Hanna the seeker"
Returns:
(object): the class instance.
"""
# initialize the object
def __init__(self, name="Pluto",*args, **kwargs):
super(Pluto_Happy, self).__init__(*args, **kwargs)
self.author = "Duc Haba"
self.name = name
self._ph()
self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
self._pp("Code name", self.name)
self._pp("Author is", self.author)
self._ph()
#
# define class var for stable division
self.fname_requirements = './pluto_happy/requirements.txt'
#
self.color_primary = '#2780e3' #blue
self.color_secondary = '#373a3c' #dark gray
self.color_success = '#3fb618' #green
self.color_info = '#9954bb' #purple
self.color_warning = '#ff7518' #orange
self.color_danger = '#ff0039' #red
self.color_mid_gray = '#495057'
self._xkeyfile = '.xoxo'
return
#
# pretty print output name-value line
def _pp(self, a, b,is_print=True):
"""
Pretty print output name-value line
Args:
a (str) :
b (str) :
is_print (bool): whether to print the header or footer lines to console or return a str.
Returns:
y : None or output as (str)
"""
# print("%34s : %s" % (str(a), str(b)))
x = f'{"%34s" % str(a)} : {str(b)}'
y = None
if (is_print):
print(x)
else:
y = x
return y
#
# pretty print the header or footer lines
def _ph(self,is_print=True):
"""
Pretty prints the header or footer lines.
Args:
is_print (bool): whether to print the header or footer lines to console or return a str.
Return:
y : None or output as (str)
"""
x = f'{"-"*34} : {"-"*34}'
y = None
if (is_print):
print(x)
else:
y = x
return y
#
# Define a function to display available CPU and RAM
def fetch_info_system(self, is_print=False):
"""
Fetches system information, such as CPU usage and memory usage.
Args:
None.
Returns:
s: (str) A string containing the system information.
"""
s=''
# Get CPU usage as a percentage
cpu_usage = psutil.cpu_percent()
# Get available memory in bytes
mem = psutil.virtual_memory()
# Convert bytes to gigabytes
mem_total_gb = mem.total / (1024 ** 3)
mem_available_gb = mem.available / (1024 ** 3)
mem_used_gb = mem.used / (1024 ** 3)
#
# print it nicely
# save the results
s += f"Total memory: {mem_total_gb:.2f} GB\n"
s += f"Available memory: {mem_available_gb:.2f} GB\n"
# print(f"Used memory: {mem_used_gb:.2f} GB")
s += f"Memory usage: {mem_used_gb/mem_total_gb:.2f}%\n"
try:
cpu_info = cpuinfo.get_cpu_info()
s += f'CPU type: {cpu_info["brand_raw"]}, arch: {cpu_info["arch"]}\n'
s += f'Number of CPU cores: {cpu_info["count"]}\n'
s += f"CPU usage: {cpu_usage}%\n"
s += f'Python version: {cpu_info["python_version"]}'
if (is_print is True):
self._ph()
self._pp("System", "Info")
self._ph()
self._pp("Total Memory", f"{mem_total_gb:.2f} GB")
self._pp("Available Memory", f"{mem_available_gb:.2f} GB")
self._pp("Memory Usage", f"{mem_used_gb/mem_total_gb:.2f}%")
self._pp("CPU Type", f'{cpu_info["brand_raw"]}, arch: {cpu_info["arch"]}')
self._pp("CPU Cores Count", f'{cpu_info["count"]}')
self._pp("CPU Usage", f"{cpu_usage}%")
self._pp("Python Version", f'{cpu_info["python_version"]}')
except Exception as e:
s += f'CPU type: Not accessible, Error: {e}'
if (is_print is True):
self._ph()
self._pp("CPU", f"*Warning* No CPU Access: {e}")
return s
#
# fetch GPU RAM info
def fetch_info_gpu(self, is_print=False):
"""
Function to fetch GPU RAM info
Args:
None.
Returns:
s: (str) GPU RAM info in human readable format.
"""
s=''
mtotal = 0
mfree = 0
try:
nvml_handle = pynvml.nvmlInit()
devices = pynvml.nvmlDeviceGetCount()
for i in range(devices):
device = pynvml.nvmlDeviceGetHandleByIndex(i)
memory_info = pynvml.nvmlDeviceGetMemoryInfo(device)
mtotal += memory_info.total
mfree += memory_info.free
mtotal = mtotal / 1024**3
mfree = mfree / 1024**3
# print(f"GPU {i}: Total Memory: {memory_info.total/1024**3} GB, Free Memory: {memory_info.free/1024**3} GB")
s += f'GPU type: {torch.cuda.get_device_name(0)}\n'
s += f'GPU ready staus: {torch.cuda.is_available()}\n'
s += f'Number of GPUs: {devices}\n'
s += f'Total Memory: {mtotal:.2f} GB\n'
s += f'Free Memory: {mfree:.2f} GB\n'
s += f'GPU allocated RAM: {round(torch.cuda.memory_allocated(0)/1024**3,2)} GB\n'
s += f'GPU reserved RAM {round(torch.cuda.memory_reserved(0)/1024**3,2)} GB\n'
if (is_print is True):
self._ph()
self._pp("GPU", "Info")
self._ph()
self._pp("GPU Type", f'{torch.cuda.get_device_name(0)}')
self._pp("GPU Ready Status", f'{torch.cuda.is_available()}')
self._pp("GPU Count", f'{devices}')
self._pp("GPU Total Memory", f'{mtotal:.2f} GB')
self._pp("GPU Free Memory", f'{mfree:.2f} GB')
self._pp("GPU allocated RAM", f'{round(torch.cuda.memory_allocated(0)/1024**3,2)} GB')
self._pp("GPU reserved RAM", f'{round(torch.cuda.memory_reserved(0)/1024**3,2)} GB')
except Exception as e:
s += f'**Warning, No GPU: {e}'
if (is_print is True):
self._ph()
self._pp("GPU", f"*Warning* No GPU: {e}")
return s
#
# fetch info about host ip
def fetch_info_host_ip(self, is_print=True):
"""
Function to fetch current host name and ip address
Args:
None.
Returns:
s: (str) host name and ip info in human readable format.
"""
s=''
try:
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
s += f"Hostname: {hostname}\n"
s += f"IP Address: {ip_address}\n"
if (is_print is True):
self._ph()
self._pp('Host and Notebook', 'Info')
self._ph()
self._pp('Host Name', f"{hostname}")
self._pp("IP Address", f"{ip_address}")
try:
from jupyter_server import serverapp
self._pp("Jupyter Server", f'{serverapp.__version__}')
except ImportError:
self._pp("Jupyter Server", "Not accessible")
try:
import notebook
self._pp("Jupyter Notebook", f'{notebook.__version__}')
except ImportError:
self._pp("Jupyter Notebook ", "Not accessible")
except Exception as e:
s += f"**Warning, No hostname: {e}"
if (is_print is True):
self._ph()
self._pp('Host Name and Notebook', 'Not accessible')
return s
#
#
# fetch import libraries
def _fetch_lib_import(self):
"""
This function fetches all the imported libraries that are installed.
Args:
None
Returns:
x (list):
list of strings containing the name of the imported libraries.
"""
x = []
for name, val in globals().items():
if isinstance(val, types.ModuleType):
x.append(val.__name__)
x.sort()
return x
#
# fetch lib version
def _fetch_lib_version(self,lib_name):
"""
This function fetches the version of the imported libraries.
Args:
lib_name (list):
list of strings containing the name of the imported libraries.
Returns:
val (list):
list of strings containing the version of the imported libraries.
"""
val = []
for x in lib_name:
try:
y = importlib.metadata.version(x)
val.append(f'{x}=={y}')
except Exception as e:
val.append(f'|{x}==unknown_*or_system')
val.sort()
return val
#
# fetch the lib name and version
def fetch_info_lib_import(self):
"""
This function fetches all the imported libraries name and version that are installed.
Args:
None
Returns:
x (list):
list of strings containing the name and version of the imported libraries.
"""
x = self._fetch_lib_version(self._fetch_lib_import())
return x
#
# write a file to local or cloud diskspace
def write_file(self,fname, in_data):
"""
Write a file to local or cloud diskspace or append to it if it already exists.
Args:
fname (str): The name of the file to write.
in_data (list): The
This is a utility function that writes a file to disk.
The file name and text to write are passed in as arguments.
The file is created, the text is written to it, and then the file is closed.
Args:
fname (str): The name of the file to write.
in_data (list): The text to write to the file.
Returns:
None
"""
if os.path.isfile(fname):
f = open(fname, "a")
else:
f = open(fname, "w")
f.writelines("\n".join(in_data))
f.close()
return
#
def fetch_installed_libraries(self):
"""
Retrieves and prints the names and versions of Python libraries installed by the user,
excluding the standard libraries.
Args:
-----
None
Returns:
--------
dictionary: (dict)
A dictionary where keys are the names of the libraries and values are their respective versions.
Examples:
---------
libraries = get_installed_libraries()
for name, version in libraries.items():
print(f"{name}: {version}")
"""
# List of standard libraries (this may not be exhaustive and might need updates based on the Python version)
# Run pip freeze command to get list of installed packages with their versions
result = subprocess.run(['pip', 'freeze'], stdout=subprocess.PIPE)
# Decode result and split by lines
packages = result.stdout.decode('utf-8').splitlines()
# Split each line by '==' to separate package names and versions
installed_libraries = {}
for package in packages:
try:
name, version = package.split('==')
installed_libraries[name] = version
except Exception as e:
#print(f'{package}: Error: {e}')
pass
return installed_libraries
#
#
def fetch_match_file_dict(self, file_path, reference_dict):
"""
Reads a file from the disk, creates an array with each line as an item,
and checks if each line exists as a key in the provided dictionary. If it exists,
the associated value from the dictionary is also returned.
Parameters:
-----------
file_path: str
Path to the file to be read.
reference_dict: dict
Dictionary against which the file content (each line) will be checked.
Returns:
--------
dict:
A dictionary where keys are the lines from the file and values are either
the associated values from the reference dictionary or None if the key
doesn't exist in the dictionary.
Raises:
-------
FileNotFoundError:
If the provided file path does not exist.
"""
if not os.path.exists(file_path):
raise FileNotFoundError(f"The file at {file_path} does not exist.")
with open(file_path, 'r') as file:
lines = file.readlines()
# Check if each line (stripped of whitespace and newline characters) exists in the reference dictionary.
# If it exists, fetch its value. Otherwise, set the value to None.
results = {line.strip(): reference_dict.get(line.strip().replace('_', '-'), None) for line in lines}
return results
# print fech_info about myself
def print_info_self(self):
"""
Prints information about the model/myself.
Args:
None
Returns:
None
"""
self._ph()
self._pp("Hello, I am", self.name)
self._pp("I will display", "Python, Jupyter, and system info.")
self._pp("Note", "For doc type: help(pluto) ...or help(your_object_name)")
self._pp("Let Rock and Roll", "¯\_(ツ)_/¯")
# system
x = self.fetch_info_system(is_print=True)
# print(x)
# self._ph()
# gpu
# self._pp('GPU', 'Info')
x = self.fetch_info_gpu(is_print=True)
# print(x)
self._ph()
# lib used
self._pp('Installed lib from', self.fname_requirements)
self._ph()
x = self.fetch_match_file_dict(self.fname_requirements, self.fetch_installed_libraries())
for item, value in x.items():
self._pp(f'{item} version', value)
#
self._ph()
self._pp('Standard lib from', 'System')
self._ph()
self._pp('matplotlib version', matplotlib.__version__)
self._pp('numpy version', numpy.__version__)
self._pp('pandas version',pandas.__version__)
self._pp('PIL version', PIL.__version__)
self._pp('torch version', torch.__version__)
#
self.print_ml_libraries()
# host ip
x = self.fetch_info_host_ip()
# print(x)
self._ph()
#
return
#
def print_ml_libraries(self):
"""
Checks for the presence of Gradio, fastai, huggingface_hub, and transformers libraries.
Prints a message indicating whether each library is found or not.
If a library is not found, it prints an informative message specifying the missing library.
"""
self._ph()
self._pp("ML Lib", "Info")
try:
import fastai
self._pp("fastai", f"{fastai.__version__}")
except ImportError:
self._pp("fastai", "*Warning* library not found.")
#
try:
import transformers
self._pp("transformers", f"{transformers.__version__}")
except ImportError:
self._pp("transformers", "*Warning* library not found.")
#
try:
import diffusers
self._pp("diffusers", f"{diffusers.__version__}")
except ImportError:
self._pp("diffusers", "*Warning* library not found.")
#
try:
import gradio
self._pp("gradio", f"{gradio.__version__}")
except ImportError:
self._pp("Gradio", "*Warning* library not found.")
try:
import huggingface_hub
self._pp("HuggingFace Hub", f"{huggingface_hub.__version__}")
except ImportError:
self._pp("huggingface_hub", "*Warning* library not found.")
return
#
def print_learner_meta_info(self, learner):
"""
Print all the leaner meta data and more.
Args: None
Return: None
"""
self._ph()
self._pp("Name", learner._meta_project_name)
self._ph()
self._pp("Error_rate", learner._meta_error_rate)
self._pp("Base Model", learner._meta_base_model_name)
self._pp("Data Source", learner._meta_data_source)
self._pp("Data Info", learner._meta_data_info)
try:
t = time.strftime('%Y-%b-%d %H:%M:%S %p', time.gmtime(learner._meta_training_unix_time))
except Exception as e:
t = learner._meta_training_unix_time
self._pp("Time Stamp", t)
# self._pp("Time Stamp", learner._meta_training_unix_time)
self._pp("Learning Rate", learner.lr)
self._pp("Base Learning Rate", learner._meta_base_lr)
self._pp("Batch Size", learner.dls.bs)
self._pp("Momentum", learner.moms)
self._pp("AI Dev Stack", learner._meta_ai_dev_stack)
self._pp("Learner Vocab", learner.dls.vocab)
self._pp("Learner Vocab Size", len(learner.dls.vocab))
#
self._ph()
self._pp("Author", learner._meta_author)
self._pp("AI Assistant", learner._meta_ai_assistant)
self._pp("GenAI Coder", learner._meta_genai)
self._pp("[Friends] Human Coder", learner._meta_human_coder)
self._pp("License", learner._meta_license)
#
self._ph()
self._pp("Conclusion", learner._meta_notes)
self._ph()
return
#
#
# add module/method
#
import functools
def add_method(cls):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
setattr(cls, func.__name__, wrapper)
return func # returning func means func can still be used normally
return decorator
#
# [END OF pluto_happy]
#
#
# ----------[END OF CODE]----------
# %%write -a app.py
# prompt: create the new class foxy from Pluto_FastAI
# wake up foxy
foxy = Pluto_Happy('Foxy, the seeker of truth.')
# %%write -a app.py
# check out my environments
foxy.fname_requirements = './requirements.txt'
foxy.print_info_self()
# %%write -a app.py
# prompt: find a 8 length hash number for a string
import hashlib
import fastai
import fastai.learner
import gradio
def generate_hash(text, max_length=8):
"""Generates an x-length hash for a given string."""
hash_object = hashlib.md5(text.encode())
hash_hex = hash_object.hexdigest()
return hash_hex[:max_length]
# # Read the file content
# file_content = os.environ['huggingface_key']
# # Generate the 8-length hash
# hash_value = generate_hash(file_content)
# print(f"The 8-length hash for the file is: {hash_value}")
# %%write -a app.py
# prompt: manual
def is_system_verified():
if (generate_hash(os.environ['huggingface_key']) == '15d797fe'):
return (True)
else:
return (False)
# %%write -a app.py
# prompt: using fast.ai to load image learner from file butterfly_learner_1703921531_loss_0.061586.pkl
# from fastai.learner import load_learner
import fastai
import fastai.learner
fname = "./butterfly_learner_1722973740.pkl"
foxy.learner = fastai.learner.load_learner(fname)
# %%write -a app.py
import datetime
foxy.print_learner_meta_info(foxy.learner)
# %%write -a app.py
# prompt: combine the above code cells in the "Predict using download images" into a function with documentation.
@add_method(Pluto_Happy)
def predict_butterfly(self, img_pil, return_top=3):
"""
Predict a butterfly image from a list of downloaded images.
Args:
img_pil: (PIL image) the image to be predict.
return_top: (int) the maximum number of perdiction to return.
the default is 3.
Returns:
(list) An array of the prediction (dictionary):
1. classification: (str) the classification prediction
2. accuracy score: (float) the accuracy value of the prediction
3. index: (int) the index of the prediction array
4. pre_arr: (list) the the prediction array
5. file_name: (str) the full-path file name of the image.
"""
names = []
values = []
# predict image
a1,b1,c1 = self.learner.predict(img_pil)
# prompt: covert c1 to a list
predict_list = c1.tolist()
#print(predict_list)
# prompt: print the top 3 largest number and index of the predict_list
top_x = sorted(range(len(predict_list)), key=lambda k: predict_list[k], reverse=True)[:return_top]
#print(top_3)
# prompt: show the name in the foxy.vocab using the top_3 as index
for idx in top_x:
# print(f"name: {foxy.learner.dls.vocab[idx]}, value: {predict_list[idx]}")
names.append(foxy.learner.dls.vocab[idx])
values.append(predict_list[idx])
#
return names, values
# %%write -a app.py
# prompt: (Gemini and codey)
# prompt: use matplotlib to draw a donut graph taking a list as name and list of value as input
# prompt: add value to the label in the draw_donut_chart function
# prompt: replace the white center of the draw_donut_chart function with an image
# prompt: add text line to matplotlib plot bottom left position
# prompt: change the draw_donut_graph function to use matplotlib.pyplot.subplots
import matplotlib
@add_method(Pluto_Happy)
def draw_donut_chart(self, names, values, img_center=None,
title="Donut Chart", figsize=(12, 6), is_show_plot=False):
"""
Creates a donut chart using Matplotlib, with 4 distinct colors for up to 4 items.
Args:
names (list): A list of names for the slices of the donut chart (max 4).
values (list): A list of numerical values corresponding to the slices.
img_center: (PIL or None) the center image or white blank image.
title (str, optional): The title of the chart. Defaults to "Donut Chart".
figsize (tuple, optional): The size of the figure in inches. Defaults to (8, 6).
"""
total = sum(values)
values = [value / total * 100 for value in values]
fig, ax = matplotlib.pyplot.subplots(figsize=figsize)
# #FF6F61 (coral), #6B5B95 (purple), #88B04B (green), #F7CAC9 (pink)
colors = ['#257180', '#F2E5BF', '#FD8B51', self.color_secondary] # Define 4 distinct colors
# colors = [self.color_primary, self.color_success, self.color_info, self.color_secondary]
wedges, texts = ax.pie(values, labels=names, wedgeprops=dict(width=0.6), colors=colors[:len(names)]) # Use the first 4 colors
legend_title = [f"{name} ({value:.2f}%)" for name, value in zip(names, values)]
ax.legend(wedges, legend_title, loc='best') # was loc="upper right"
# Add an image to the center of the donut chart
# image_path = "/content/butterfly_img/Monarch460CL.jpg"
# img = matplotlib.image.imread(image_path)
fig = matplotlib.pyplot.gcf()
if img_center is None:
center_circle = matplotlib.pyplot.Circle((0, 0), 0.4, fc='white', ec='#333333')
ax.add_artist(center_circle)
else:
# img = PIL.Image.open(img_center_path)
ax.imshow(img_center, extent=(-0.5, 0.5, -0.5, 0.5))
t = f"{title}:\n{names[0]}, {round(values[0], 2)}% certainty"
ax.set_title(t, fontsize=16)
ax.set_axis_off()
#
copyw = f"*{self.author}, [AI] {self.name} (GNU 3.0) 2024"
ax.text(x=0.05, y=0.05, s=copyw, ha='left', va='bottom',
fontsize=7.0, transform=ax.transAxes)
#
fig.tight_layout()
if (is_show_plot is True):
fig.show()
print("show me")
# plt.show()
return fig
# %%write -a app.py
# manual
# define all components use in Gradio
xtitle = """
🦋 Welcome: Butterfly CNN Image Classification App
### Identify 75 Butterfly Species From Photo.
>**Requirement Statement:** (From the client) We aim to boost butterfly numbers by creating and maintaining suitable habitats, promoting biodiversity, and implementing conservation measures that protect them from threats such as habitat loss, climate change, and pesticides.
>
>**Problem Facing:** Butterfly populations are decreasing due to habitat loss, climate change, and pesticides. This issue endangers their diversity and risks essential pollination services, impacting food production and natural environments. We need the **butterfly population count** from around the world to assess the damage.
>
> This real-world CNN app is from the ["AI Solution Architect," by ELVTR and Duc Haba](https://elvtr.com/course/ai-solution-architect?utm_source=instructor&utm_campaign=AISA&utm_content=linkedin).
---
### 🌴 Helpful Instruction:
1. Take a picture or upload a picture.
2. Click the "Submit" button.
3. View the result on the Donut plot.
4. (Optional) Rate the correctness of the identification.
"""
xdescription = """
---
### 🌴 Author Note:
- The final UI is a sophisticated iOS, Android, and web app developed by the UI team. It may or may not include the donut graph, but they all utilize the same REST input-output JSON API.
- *I hope you enjoy this as much as I enjoyed making it.*
- **For Fun:** Upload your face picture and see what kind of butterfly you are.
---
"""
xallow_flagging = "manual"
xflagging_options = ["Good", "Bad"]
xarticle = """
---
### 🌻 About:
- Develop by Duc Haba (human) and GenAI partners (2024).
- AI Codey (for help in coding)
- AI GPT-4o (for help in coding)
- AI Copilot (for help in coding)
- Python Jupyter Notebook on Google Colab Pro.
- Python 3.10
- 8 CPU Cores (Intel Xeon)
- 60 GB RAM
- 1 GPU (Tesla T4)
- 15 GB GPU RAM
- 254 GB Disk Space
- Primary Lib:
- Fastai (2.7.17)
- Standard Lib:
- PyTorch
- Gradio
- PIL
- Matplotlib
- Numpy
- Pandas
- Dataset (labled butterfly images)
- Kaggle website
- The University of Florida's McGuire Center for Lepidoptera and Biodiversity (United States)
- Deployment Model and Hardware:
- Butterfly CNN model (inference engine)
- 2 CPU Cores (Intel Xeon)
- 16 GB RAM
- No GPU
- 16 GB Disk Space
- Virtual container (for scaleability in server-cluster)
- No Data and no other ML or LLM
- Own 100% Intellectual Property
---
### 🤔 Accuracy and Benchmark
**Task:** Indentify 75 type of butterfly species from user taking photo with their iPhone.
- **94.1% Accurate**: This Butterfly CNN Image Classification developed by Duc Haba and GenAI friends (Deep Learning, CNN)
- **Average 87.5% Accurate**: Lepidopterist (human)
- **Less than 50% Accurate**: Generative AI, like Genini or Claude 3.5 (AI)
(NOTE: Lepidopterist and GenAI estimate are from online sources and GenAI.)
---
### 🦋 KPIs (Key Performance Indicator by Client)
1. **AI-Powered Identification:** The app leverages an advanced CNN model to achieve identification accuracy on par with or surpassing that of expert lepidopterists. It quickly and precisely recognizes butterfly species from user-uploaded images, making it an invaluable tool for butterfly enthusiasts, citizen scientists, and researchers.
- Complied. Detail on seperate document.
2. **Accessible API for Integration:** We'll expose an API to integrate the AI with mobile and web apps. It will encourage open-source developers to build hooks into existing or new apps.
- Complied. Detail on seperate document.
3. **Universal Access:** The Butterfly app is for everyone, from citizens to experts. We want to create a community that cares about conservation.
- Complied. Detail on seperate document.
4. **Shared Database for Research:** Our solution includes
a shared database that will hold all collected data. It will
be a valuable resource for researchers studying butterfly populations, their distribution, and habitat changes. The database will consolidate real-world data to support scientific research and comprehensive conservation planning.
- Complied. Detail on seperate document.
5. **Budget and Schedule:** *Withheld.*
- Complied ...mostly :-)
---
### 🤖 The First Law of AI Collaboration:
- This CNN Image Classification app development is in compliance with [The First Law of AI Collaboration](https://www.linkedin.com/pulse/first-law-ai-collaboration-duc-haba-hcqkc/)
---
### 🌟 "AI Solution Architect" Course by ELVTR
>Welcome to the fascinating world of AI and Convolutional Neural Network (CNN) Image Classification. This CNN model is a part of one of three hands-on application. In our journey together, we will explore the [AI Solution Architect](https://elvtr.com/course/ai-solution-architect?utm_source=instructor&utm_campaign=AISA&utm_content=linkedin) course, meticulously crafted by ELVTR in collaboration with Duc Haba. This course is intended to serve as your gateway into the dynamic and constantly evolving field of AI Solution Architect, providing you with a comprehensive understanding of its complexities and applications.
>An AI Solution Architect (AISA) is a mastermind who possesses a deep understanding of the complex technicalities of AI and knows how to creatively integrate them into real-world solutions. They bridge the gap between theoretical AI models and practical, effective applications. AISA works as a strategist to design AI systems that align with business objectives and technical requirements. They delve into algorithms, data structures, and computational theories to translate them into tangible, impactful AI solutions that have the potential to revolutionize industries.
> 🍎 [Sign up for the course today](https://elvtr.com/course/ai-solution-architect?utm_source=instructor&utm_campaign=AISA&utm_content=linkedin), and I will see you in class.
- An article about the Butterfly CNN Image Classification will be coming soon.
---
### 🙈 Legal:
- The intent is to share with Duc's friends and students in the AI Solution Architect course by ELVTR, but for those with nefarious intent, this Butterfly CNN Image Classification is governed by the GNU 3.0 License: https://www.gnu.org/licenses/gpl-3.0.en.html
- Author: Copyright (C), 2024 **[Duc Haba](https://linkedin.com/in/duchaba)**
---
"""
# xinputs = ["image"]
xinputs = [gradio.Image(type="pil")]
xoutputs = ["plot"]
# %%write -a app.py
# prompt: write a python code using gradio for simple hello world app
# prompt: show all the possible parameters from gradio Interface function
# manual: edit the rest
def say_butterfly_name(img):
# check for access
if(is_system_verified() is False):
fname = "ezirohtuanU metsyS"[::-1]
names = [fname]
values= [1.0]
return names, values
#
names, values = foxy.predict_butterfly(img)
# add in the other
names.append("All Others")
values.append(1-sum(values))
# # val.append(item)
xcanvas = foxy.draw_donut_chart(names, values,
img_center=img,
title="Top 3 (out of 75) Butterfly CNN Prediction",
is_show_plot=False,
figsize=(9,9))
return xcanvas
#
#
# theme, "base, default, glass, soft, monochrome"
app = gradio.Interface(fn=say_butterfly_name,
inputs=xinputs,
outputs=xoutputs,
live=False,
allow_duplication=False,
theme="soft",
title=xtitle,
description=xdescription,
article=xarticle,
allow_flagging=xallow_flagging,
flagging_options=xflagging_options)
#
inline = True
width = "80%"
height = "80%" # 1200
app.launch()
# app.launch(debug=True) |