Spaces:
Runtime error
Runtime error
import transformers | |
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
st.set_page_config( | |
page_title="Romanian Text Generator", | |
page_icon="π·π΄", | |
layout="wide" | |
) | |
st.write("Type your text here and press Ctrl+Enter to generate the next sequence:") | |
model_list = [ | |
"dumitrescustefan/gpt-neo-romanian-780m", | |
"readerbench/RoGPT2-base", | |
"readerbench/RoGPT2-medium", | |
"readerbench/RoGPT2-large" | |
] | |
st.sidebar.header("Select model") | |
model_checkpoint = st.sidebar.radio("", model_list) | |
st.sidebar.header("Select generation parameters") | |
max_length = st.sidebar.slider("Max Length", value=20, min_value=10, max_value=200) | |
temperature = st.sidebar.slider("Temperature", value=1.0, min_value=0.0, max_value=1.0, step=0.05) | |
top_k = st.sidebar.slider("Top-k", min_value=0, max_value=15, step=1, value=0) | |
top_p = st.sidebar.slider("Top-p", min_value=0.0, max_value=1.0, step=0.05, value=0.9) | |
text_element = st.text_input('Text:', 'Acesta este un exemplu,') | |
def setModel(model_checkpoint): | |
model = AutoModelForCausalLM.from_pretrained(model_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
return model, tokenizer | |
def infer(model, tokenizer, text, max_length, temperature, top_k, top_p): | |
encoded_prompt = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt") | |
output_sequences = model.generate( | |
input_ids=encoded_prompt.input_ids, | |
max_length=max_length, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
do_sample=True, | |
num_return_sequences=1 | |
) | |
return output_sequences | |
model, tokenizer = setModel(model_checkpoint) | |
output_sequences = infer(model, tokenizer, text_element, max_length, temperature, top_k, top_p) | |
for generated_sequence_idx, generated_sequence in enumerate(output_sequences): | |
print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===") | |
generated_sequences = generated_sequence.tolist() | |
# Decode text | |
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True) | |
# Remove all text after the stop token | |
# text = text[: text.find(args.stop_token) if args.stop_token else None] | |
# Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing | |
total_sequence = ( | |
sent + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)):] | |
) | |
generated_sequences.append(total_sequence) | |
print(total_sequence) | |
st.write(generated_sequences[-1], text_element) | |