Qwen2-Math-Demo / app.py
JustinLin610's picture
Update app.py
4429871 verified
raw
history blame
3.99 kB
import gradio as gr
import os
os.system('pip install dashscope -U')
import tempfile
from pathlib import Path
import secrets
import dashscope
from dashscope import MultiModalConversation, Generation
YOUR_API_TOKEN = os.getenv('YOUR_API_TOKEN')
dashscope.api_key = YOUR_API_TOKEN
math_messages = []
def process_image(image):
global math_messages
math_messages = [] # reset when upload image
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
Path(tempfile.gettempdir()) / "gradio"
)
os.makedirs(uploaded_file_dir, exist_ok=True)
name = f"tmp{secrets.token_hex(20)}.jpg"
filename = os.path.join(uploaded_file_dir, name)
image.save(filename)
# Use qwen-vl-max-0809 for OCR
messages = [{
'role': 'system',
'content': [{'text': 'You are a helpful assistant.'}]
}, {
'role': 'user',
'content': [
{'image': f'file://{filename}'},
{'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'}
]
}]
response = MultiModalConversation.call(model='qwen-vl-max-0809', messages=messages)
os.remove(filename)
return response.output.choices[0]["message"]["content"]
def get_math_response(image_description, user_question):
global math_messages
if not math_messages:
math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'})
math_messages = math_messages[:1] + math_messages[1:][-4:]
if image_description is not None:
content = f'Image description: {image_description}\n\n'
else:
content = ''
query = f"{content}User question: {user_question}"
math_messages.append({'role': 'user', 'content': query})
response = Generation.call(
model="qwen2-math-72b-instruct",
messages=math_messages,
result_format='message',
stream=True
)
answer = None
for resp in response:
if resp.output is None:
continue
answer = resp.output.choices[0].message.content
yield answer.replace("\\", "\\\\")
print(f'query: {query}\nanswer: {answer}')
if answer is None:
math_messages.pop()
else:
math_messages.append({'role': 'assistant', 'content': answer})
def math_chat_bot(image, question):
if image is not None:
image_description = process_image(image)
else:
image_description = None
yield from get_math_response(image_description, question)
css = """
#qwen-md .katex-display { display: inline; }
#qwen-md .katex-display>.katex { display: inline; }
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
"""
# Crate interface
iface = gr.Interface(
css=css,
fn=math_chat_bot,
inputs=[
gr.Image(type="pil", label="upload image"),
gr.Textbox(label="input your question")
],
outputs=gr.Markdown(label="answer", latex_delimiters=[
{"left": "\\(", "right": "\\)", "display": True},
{"left": "\\begin\{equation\}", "right": "\\end\{equation\}", "display": True},
{"left": "\\begin\{align\}", "right": "\\end\{align\}", "display": True},
{"left": "\\begin\{alignat\}", "right": "\\end\{alignat\}", "display": True},
{"left": "\\begin\{gather\}", "right": "\\end\{gather\}", "display": True},
{"left": "\\begin\{CD\}", "right": "\\end\{CD\}", "display": True},
{"left": "\\[", "right": "\\]", "display": True}
], elem_id="qwen-md"),
title=gr.Markdown("""<center><font size=8>📖 Qwen2 Math Demo</center>"""),
allow_flagging='never',
description=gr.Markdown("""<center><font size=3>This WebUI is based on Qwen2-VL for OCR and Qwen2-Math for mathematical reasoning. You can input either images or texts of mathematical or arithmetic problems.</center>""")
)
# Launch gradio application
iface.launch()