|
from textwrap import dedent |
|
|
|
import streamlit as st |
|
|
|
from defaults import ( |
|
PROJECT_NAME, |
|
ARGILLA_URL, |
|
DIBT_PARENT_APP_URL, |
|
DATASET_URL, |
|
DATASET_REPO_ID, |
|
) |
|
|
|
|
|
def project_sidebar(): |
|
if PROJECT_NAME == "DEFAULT_DOMAIN": |
|
st.warning( |
|
"Please set up the project configuration in the parent app before proceeding." |
|
) |
|
st.stop() |
|
|
|
st.sidebar.subheader(f"A Data Growing Project in the domain of {PROJECT_NAME}") |
|
st.sidebar.markdown( |
|
""" |
|
This space helps you create a dataset seed for building diverse domain-specific datasets for aligning models. |
|
""" |
|
) |
|
st.sidebar.link_button(f"π Dataset Repo", DATASET_URL) |
|
st.sidebar.link_button(f"π€ Argilla Space", ARGILLA_URL) |
|
hub_username = DATASET_REPO_ID.split("/")[0] |
|
project_name = DATASET_REPO_ID.split("/")[1] |
|
st.session_state["project_name"] = project_name |
|
st.session_state["hub_username"] = hub_username |
|
st.session_state["hub_token"] = st.sidebar.text_input( |
|
"Hub Token", type="password", value=None |
|
) |
|
st.sidebar.link_button( |
|
"π€ Get your Hub Token", "https://huggingface.co/settings/tokens" |
|
) |
|
if all( |
|
( |
|
st.session_state.get("project_name"), |
|
st.session_state.get("hub_username"), |
|
st.session_state.get("hub_token"), |
|
) |
|
): |
|
st.success(f"Using the dataset repo {hub_username}/{project_name} on the Hub") |
|
|
|
st.sidebar.divider() |
|
|
|
st.sidebar.link_button("π§βπΎ New Project", DIBT_PARENT_APP_URL) |
|
|
|
if st.session_state["hub_token"] is None: |
|
st.error("Please provide a Hub token to generate answers") |
|
st.stop() |
|
|
|
|
|
def create_seed_terms(topics: list[str], perspectives: list[str]) -> list[str]: |
|
"""Create seed terms for self intruct to start from.""" |
|
|
|
return [ |
|
f"{topic} from a {perspective} perspective" |
|
for topic in topics |
|
for perspective in perspectives |
|
] |
|
|
|
|
|
def create_application_instruction(domain: str, examples: list[dict[str, str]]) -> str: |
|
"""Create the instruction for Self-Instruct task.""" |
|
system_prompt = dedent( |
|
f"""You are an AI assistant than generates queries around the domain of {domain}. |
|
Your should not expect basic but profound questions from your users. |
|
The queries should reflect a diversxamity of vision and economic positions and political positions. |
|
The queries may know about different methods of {domain}. |
|
The queries can be positioned politically, economically, socially, or practically. |
|
Also take into account the impact of diverse causes on diverse domains.""" |
|
) |
|
for example in examples: |
|
question = example["question"] |
|
answer = example["answer"] |
|
system_prompt += f"""\n- Question: {question}\n- Answer: {answer}\n""" |
|
|
|
return system_prompt |
|
|