Spaces:
Sleeping
Sleeping
import os | |
import json | |
import time | |
from datetime import datetime | |
from pathlib import Path | |
import tempfile | |
import pandas as pd | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import ( | |
AutoModelForSpeechSeq2Seq, | |
AutoTokenizer, | |
AutoFeatureExtractor, | |
pipeline, | |
) | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import torch | |
from datasets import load_dataset, Dataset, DatasetDict | |
import spaces | |
# Constants | |
MODEL_NAME = "openai/whisper-large-v3-turbo" | |
BATCH_SIZE = 8 # Optimized for better GPU utilization | |
YT_LENGTH_LIMIT_S = 10800 # 3 hours | |
DATASET_NAME = "dwb2023/yt-transcripts-v3" | |
FILE_LIMIT_MB = 1000 | |
# Environment setup | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
device = 0 if torch.cuda.is_available() else "cpu" | |
# Pipeline setup | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
def reset_and_update_dataset(new_data): | |
""" | |
Resets and updates the dataset with new transcription data. | |
Args: | |
new_data (dict): Dictionary containing the new data to be added to the dataset. | |
""" | |
schema = { | |
"url": pd.Series(dtype="str"), | |
"transcription": pd.Series(dtype="str"), | |
"title": pd.Series(dtype="str"), | |
"duration": pd.Series(dtype="int"), | |
"uploader": pd.Series(dtype="str"), | |
"upload_date": pd.Series(dtype="datetime64[ns]"), | |
"description": pd.Series(dtype="str"), | |
"datetime": pd.Series(dtype="datetime64[ns]") | |
} | |
df = pd.DataFrame(schema) | |
df = pd.concat([df, pd.DataFrame([new_data])], ignore_index=True) | |
updated_dataset = Dataset.from_pandas(df) | |
dataset_dict = DatasetDict({"train": updated_dataset}) | |
dataset_dict.push_to_hub(DATASET_NAME) | |
print("Dataset reset and updated successfully!") | |
def download_yt_audio(yt_url, filename): | |
""" | |
Downloads audio from a YouTube video using yt_dlp. | |
Args: | |
yt_url (str): URL of the YouTube video. | |
filename (str): Path to save the downloaded audio. | |
Returns: | |
dict: Information about the YouTube video. | |
""" | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration"] | |
if file_length > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length)) | |
raise gr.Error( | |
f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video." | |
) | |
ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
ydl.download([yt_url]) | |
return info | |
def yt_transcribe(yt_url, task): | |
""" | |
Transcribes a YouTube video and saves the transcription if it doesn't already exist. | |
Args: | |
yt_url (str): URL of the YouTube video. | |
task (str): Task to perform - "transcribe" or "translate". | |
Returns: | |
str: The transcription of the video. | |
""" | |
dataset = load_dataset(DATASET_NAME, split="train") | |
for row in dataset: | |
if row['url'] == yt_url: | |
return row['transcription'] | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
info = download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
video_data = f.read() | |
inputs = ffmpeg_read(video_data, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
text = pipe( | |
inputs, | |
batch_size=BATCH_SIZE, | |
generate_kwargs={"task": task}, | |
return_timestamps=True, | |
)["text"] | |
save_transcription(yt_url, text, info) | |
return text | |
def save_transcription(yt_url, transcription, info): | |
""" | |
Saves the transcription data to the dataset. | |
Args: | |
yt_url (str): URL of the YouTube video. | |
transcription (str): The transcribed text. | |
info (dict): Additional information about the video. | |
""" | |
data = { | |
"url": yt_url, | |
"transcription": transcription, | |
"title": info.get("title", "N/A"), | |
"duration": info.get("duration", 0), | |
"uploader": info.get("uploader", "N/A"), | |
"upload_date": info.get("upload_date", "N/A"), | |
"description": info.get("description", "N/A"), | |
"datetime": datetime.now().isoformat() | |
} | |
dataset = load_dataset(DATASET_NAME, split="train") | |
df = dataset.to_pandas() | |
df = pd.concat([df, pd.DataFrame([data])], ignore_index=True) | |
updated_dataset = Dataset.from_pandas(df) | |
dataset_dict = DatasetDict({"train": updated_dataset}) | |
dataset_dict.push_to_hub(DATASET_NAME) | |
def transcribe(inputs, task): | |
""" | |
Transcribes an audio input. | |
Args: | |
inputs (str): Path to the audio file. | |
task (str): Task to perform - "transcribe" or "translate". | |
Returns: | |
str: The transcription of the audio. | |
""" | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return text | |
# Gradio App Setup | |
demo = gr.Blocks() | |
# YouTube Transcribe Tab | |
yt_transcribe_interface = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.Textbox( | |
lines=1, | |
placeholder="Paste the URL to a YouTube video here", | |
label="YouTube URL", | |
), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
], | |
outputs="text", | |
title="YouTube Transcription", | |
description=( | |
f"Transcribe and archive YouTube videos using the {MODEL_NAME} model. " | |
"The transcriptions are saved for future reference, so repeated requests are faster!" | |
), | |
allow_flagging="never", | |
) | |
# Microphone Transcribe Tab | |
mf_transcribe_interface = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="microphone", type="filepath"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
], | |
outputs="text", | |
title="Microphone Transcription", | |
description="Transcribe audio captured through your microphone.", | |
allow_flagging="never", | |
) | |
# File Upload Transcribe Tab | |
file_transcribe_interface = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="upload", type="filepath", label="Audio file"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
], | |
outputs="text", | |
title="Audio File Transcription", | |
description="Transcribe uploaded audio files of arbitrary length.", | |
allow_flagging="never", | |
) | |
# Organize Tabs in the Gradio App | |
with demo: | |
gr.TabbedInterface( | |
[yt_transcribe_interface, mf_transcribe_interface, file_transcribe_interface], | |
["YouTube", "Microphone", "Audio File"] | |
) | |
demo.queue().launch() |