Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import pipeline, BitsAndBytesConfig, WhisperForConditionalGeneration | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import torch | |
from huggingface_hub import CommitScheduler | |
import spaces | |
import tempfile | |
import os | |
import json | |
from datetime import datetime | |
from pathlib import Path | |
from uuid import uuid4 | |
from functools import lru_cache | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
MODEL_NAME = "dwb2023/whisper-large-v3-quantized" | |
BATCH_SIZE = 8 | |
YT_LENGTH_LIMIT_S = 4800 # 1 hour 20 minutes | |
device = 0 if torch.cuda.is_available() else "cpu" | |
# Load model with bitsandbytes quantization | |
bnb_config = BitsAndBytesConfig(load_in_4bit=True) | |
# Load the model | |
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, config=bnb_config) | |
# bnb_config = bnb.QuantizationConfig(bits=4) | |
pipe = pipeline(task="automatic-speech-recognition", model=model, chunk_length_s=30, device=device) | |
# Define paths and create directory if not exists | |
JSON_DATASET_DIR = Path("json_dataset") | |
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True) | |
JSON_DATASET_PATH = JSON_DATASET_DIR / f"transcriptions-{uuid4()}.json" | |
# Initialize CommitScheduler for saving data to Hugging Face Dataset | |
scheduler = CommitScheduler( | |
repo_id="transcript-dataset-repo", | |
repo_type="dataset", | |
folder_path=JSON_DATASET_DIR, | |
path_in_repo="data", | |
) | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def transcribe_audio(inputs, task): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return text | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration"] | |
if file_length > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length)) | |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
ydl.download([yt_url]) | |
def yt_transcribe(yt_url, task): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
save_transcription(yt_url, text) | |
return text | |
def save_transcription(yt_url, transcription): | |
with scheduler.lock: | |
with JSON_DATASET_PATH.open("a") as f: | |
json.dump({"url": yt_url, "transcription": transcription, "datetime": datetime.now().isoformat()}, f) | |
f.write("\n") | |
def yt_transcribe2(yt_url, task, max_filesize=75.0): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return html_embed_str, text | |
demo = gr.Blocks() | |
yt_transcribe_interface = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe") | |
], | |
outputs="text", | |
title="Whisper Large V3: Transcribe YouTube", | |
description=( | |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" | |
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of" | |
" arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe2, | |
inputs=[ | |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe") | |
], | |
outputs=["html", "text"], | |
title="Whisper Large V3: Transcribe YouTube", | |
description=( | |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" | |
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of" | |
" arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([yt_transcribe_interface, yt_transcribe], ["YouTube", "YouTube HF"]) | |
demo.queue().launch() | |