import os import json import time from datetime import datetime from pathlib import Path import tempfile import pandas as pd import gradio as gr import yt_dlp as youtube_dl from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read import torch from datasets import load_dataset, Dataset, DatasetDict import spaces # Constants MODEL_NAME = "openai/whisper-large-v3-turbo" BATCH_SIZE = 8 # Optimized for better GPU utilization YT_LENGTH_LIMIT_S = 10800 # 3 hours DATASET_NAME = "dwb2023/yt-transcripts-v3" FILE_LIMIT_MB = 1000 # Environment setup os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" device = 0 if torch.cuda.is_available() else "cpu" # Pipeline setup pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def reset_and_update_dataset(new_data): """ Resets and updates the dataset with new transcription data. Args: new_data (dict): Dictionary containing the new data to be added to the dataset. """ schema = { "url": pd.Series(dtype="str"), "transcription": pd.Series(dtype="str"), "title": pd.Series(dtype="str"), "duration": pd.Series(dtype="int"), "uploader": pd.Series(dtype="str"), "upload_date": pd.Series(dtype="datetime64[ns]"), "description": pd.Series(dtype="str"), "datetime": pd.Series(dtype="datetime64[ns]") } df = pd.DataFrame(schema) df = pd.concat([df, pd.DataFrame([new_data])], ignore_index=True) updated_dataset = Dataset.from_pandas(df) dataset_dict = DatasetDict({"train": updated_dataset}) dataset_dict.push_to_hub(DATASET_NAME) print("Dataset reset and updated successfully!") def download_yt_audio(yt_url, filename): """ Downloads audio from a YouTube video using yt_dlp. Args: yt_url (str): URL of the YouTube video. filename (str): Path to save the downloaded audio. Returns: dict: Information about the YouTube video. """ info_loader = youtube_dl.YoutubeDL() try: info = info_loader.extract_info(yt_url, download=False) except youtube_dl.utils.DownloadError as err: raise gr.Error(str(err)) file_length = info["duration"] if file_length > YT_LENGTH_LIMIT_S: yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S)) file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length)) raise gr.Error( f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video." ) ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"} with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download([yt_url]) return info @spaces.GPU(duration=120) def yt_transcribe(yt_url, task): """ Transcribes a YouTube video and saves the transcription if it doesn't already exist. Args: yt_url (str): URL of the YouTube video. task (str): Task to perform - "transcribe" or "translate". Returns: str: The transcription of the video. """ dataset = load_dataset(DATASET_NAME, split="train") for row in dataset: if row['url'] == yt_url: return row['transcription'] with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "video.mp4") info = download_yt_audio(yt_url, filepath) with open(filepath, "rb") as f: video_data = f.read() inputs = ffmpeg_read(video_data, pipe.feature_extractor.sampling_rate) inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} text = pipe( inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True, )["text"] save_transcription(yt_url, text, info) return text def save_transcription(yt_url, transcription, info): """ Saves the transcription data to the dataset. Args: yt_url (str): URL of the YouTube video. transcription (str): The transcribed text. info (dict): Additional information about the video. """ data = { "url": yt_url, "transcription": transcription, "title": info.get("title", "N/A"), "duration": info.get("duration", 0), "uploader": info.get("uploader", "N/A"), "upload_date": info.get("upload_date", "N/A"), "description": info.get("description", "N/A"), "datetime": datetime.now().isoformat() } dataset = load_dataset(DATASET_NAME, split="train") df = dataset.to_pandas() df = pd.concat([df, pd.DataFrame([data])], ignore_index=True) updated_dataset = Dataset.from_pandas(df) dataset_dict = DatasetDict({"train": updated_dataset}) dataset_dict.push_to_hub(DATASET_NAME) @spaces.GPU def transcribe(inputs, task): """ Transcribes an audio input. Args: inputs (str): Path to the audio file. task (str): Task to perform - "transcribe" or "translate". Returns: str: The transcription of the audio. """ if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text # Gradio App Setup demo = gr.Blocks() # YouTube Transcribe Tab yt_transcribe_interface = gr.Interface( fn=yt_transcribe, inputs=[ gr.Textbox( lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL", ), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), ], outputs="text", title="YouTube Transcription", description=( f"Transcribe and archive YouTube videos using the {MODEL_NAME} model. " "The transcriptions are saved for future reference, so repeated requests are faster!" ), allow_flagging="never", ) # Microphone Transcribe Tab mf_transcribe_interface = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="microphone", type="filepath"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), ], outputs="text", title="Microphone Transcription", description="Transcribe audio captured through your microphone.", allow_flagging="never", ) # File Upload Transcribe Tab file_transcribe_interface = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="upload", type="filepath", label="Audio file"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), ], outputs="text", title="Audio File Transcription", description="Transcribe uploaded audio files of arbitrary length.", allow_flagging="never", ) # Organize Tabs in the Gradio App with demo: gr.TabbedInterface( [yt_transcribe_interface, mf_transcribe_interface, file_transcribe_interface], ["YouTube", "Microphone", "Audio File"] ) demo.queue().launch(ssr_mode=False)