import os import functools import numpy as np import fastapi import voyageai vo = voyageai.Client(os.environ['VOYAGE_API_KEY']) theorems = [ theorem.split('--ast--\n') for theorem in open('ast.txt').read().split('----ast----\n')[1:] ] embed = np.load('embed_arr.npy') app = fastapi.FastAPI() top_n = 50 @functools.lru_cache(maxsize=2*1024*1024*1024//(80 + top_n*8)) def lru_search(query): query_embed = vo.embed([query], model="voyage-large-2-instruct", input_type="query").embeddings[0] similarities = np.dot(embed, query_embed) top = np.argpartition(similarities, -top_n)[-top_n:] top = top[np.argsort(similarities[top])][::-1] sim = similarities[top] return top, sim @app.get("/search") def search(query: str): # if query is too long, throw an error if len(query) > 80: raise fastapi.HTTPException(status_code=400, detail="Query is too long") top, sim = lru_search(query) results = [] for i, similarity in zip(top, sim): module, name, typ, comment = theorems[i] results.append({ "module": module, "name": name, "type": typ, "comment": comment, "similarity": similarity }) return results @app.get("/") def read_root(): # HTML return fastapi.responses.HTMLResponse( content=""" Search

Search Mathlib

""" ) ''' to run this with auto-reload, use the following command: cd data uvicorn test_embed:app --reload '''