Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import cv2 | |
import random | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms.functional as TF | |
from torch.utils.data import Dataset | |
import kiui | |
from core.options import Options | |
from core.utils import get_rays, grid_distortion, orbit_camera_jitter | |
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) | |
class ObjaverseDataset(Dataset): | |
def _warn(self): | |
raise NotImplementedError('this dataset is just an example and cannot be used directly, you should modify it to your own setting! (search keyword TODO)') | |
def __init__(self, opt: Options, training=True): | |
self.opt = opt | |
self.training = training | |
# TODO: remove this barrier | |
self._warn() | |
# TODO: load the list of objects for training | |
self.items = [] | |
with open('TODO: file containing the list', 'r') as f: | |
for line in f.readlines(): | |
self.items.append(line.strip()) | |
# naive split | |
if self.training: | |
self.items = self.items[:-self.opt.batch_size] | |
else: | |
self.items = self.items[-self.opt.batch_size:] | |
# default camera intrinsics | |
self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy)) | |
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32) | |
self.proj_matrix[0, 0] = 1 / self.tan_half_fov | |
self.proj_matrix[1, 1] = 1 / self.tan_half_fov | |
self.proj_matrix[2, 2] = (self.opt.zfar + self.opt.znear) / (self.opt.zfar - self.opt.znear) | |
self.proj_matrix[3, 2] = - (self.opt.zfar * self.opt.znear) / (self.opt.zfar - self.opt.znear) | |
self.proj_matrix[2, 3] = 1 | |
def __len__(self): | |
return len(self.items) | |
def __getitem__(self, idx): | |
uid = self.items[idx] | |
results = {} | |
# load num_views images | |
images = [] | |
masks = [] | |
cam_poses = [] | |
vid_cnt = 0 | |
# TODO: choose views, based on your rendering settings | |
if self.training: | |
# input views are in (36, 72), other views are randomly selected | |
vids = np.random.permutation(np.arange(36, 73))[:self.opt.num_input_views].tolist() + np.random.permutation(100).tolist() | |
else: | |
# fixed views | |
vids = np.arange(36, 73, 4).tolist() + np.arange(100).tolist() | |
for vid in vids: | |
image_path = os.path.join(uid, 'rgb', f'{vid:03d}.png') | |
camera_path = os.path.join(uid, 'pose', f'{vid:03d}.txt') | |
try: | |
# TODO: load data (modify self.client here) | |
image = np.frombuffer(self.client.get(image_path), np.uint8) | |
image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1] | |
c2w = [float(t) for t in self.client.get(camera_path).decode().strip().split(' ')] | |
c2w = torch.tensor(c2w, dtype=torch.float32).reshape(4, 4) | |
except Exception as e: | |
# print(f'[WARN] dataset {uid} {vid}: {e}') | |
continue | |
# TODO: you may have a different camera system | |
# blender world + opencv cam --> opengl world & cam | |
c2w[1] *= -1 | |
c2w[[1, 2]] = c2w[[2, 1]] | |
c2w[:3, 1:3] *= -1 # invert up and forward direction | |
# scale up radius to fully use the [-1, 1]^3 space! | |
c2w[:3, 3] *= self.opt.cam_radius / 1.5 # 1.5 is the default scale | |
image = image.permute(2, 0, 1) # [4, 512, 512] | |
mask = image[3:4] # [1, 512, 512] | |
image = image[:3] * mask + (1 - mask) # [3, 512, 512], to white bg | |
image = image[[2,1,0]].contiguous() # bgr to rgb | |
images.append(image) | |
masks.append(mask.squeeze(0)) | |
cam_poses.append(c2w) | |
vid_cnt += 1 | |
if vid_cnt == self.opt.num_views: | |
break | |
if vid_cnt < self.opt.num_views: | |
print(f'[WARN] dataset {uid}: not enough valid views, only {vid_cnt} views found!') | |
n = self.opt.num_views - vid_cnt | |
images = images + [images[-1]] * n | |
masks = masks + [masks[-1]] * n | |
cam_poses = cam_poses + [cam_poses[-1]] * n | |
images = torch.stack(images, dim=0) # [V, C, H, W] | |
masks = torch.stack(masks, dim=0) # [V, H, W] | |
cam_poses = torch.stack(cam_poses, dim=0) # [V, 4, 4] | |
# normalized camera feats as in paper (transform the first pose to a fixed position) | |
transform = torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, self.opt.cam_radius], [0, 0, 0, 1]], dtype=torch.float32) @ torch.inverse(cam_poses[0]) | |
cam_poses = transform.unsqueeze(0) @ cam_poses # [V, 4, 4] | |
images_input = F.interpolate(images[:self.opt.num_input_views].clone(), size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) # [V, C, H, W] | |
cam_poses_input = cam_poses[:self.opt.num_input_views].clone() | |
# data augmentation | |
if self.training: | |
# apply random grid distortion to simulate 3D inconsistency | |
if random.random() < self.opt.prob_grid_distortion: | |
images_input[1:] = grid_distortion(images_input[1:]) | |
# apply camera jittering (only to input!) | |
if random.random() < self.opt.prob_cam_jitter: | |
cam_poses_input[1:] = orbit_camera_jitter(cam_poses_input[1:]) | |
images_input = TF.normalize(images_input, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) | |
# resize render ground-truth images, range still in [0, 1] | |
results['images_output'] = F.interpolate(images, size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, C, output_size, output_size] | |
results['masks_output'] = F.interpolate(masks.unsqueeze(1), size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, 1, output_size, output_size] | |
# build rays for input views | |
rays_embeddings = [] | |
for i in range(self.opt.num_input_views): | |
rays_o, rays_d = get_rays(cam_poses_input[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3] | |
rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6] | |
rays_embeddings.append(rays_plucker) | |
rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous() # [V, 6, h, w] | |
final_input = torch.cat([images_input, rays_embeddings], dim=1) # [V=4, 9, H, W] | |
results['input'] = final_input | |
# opengl to colmap camera for gaussian renderer | |
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction | |
# cameras needed by gaussian rasterizer | |
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4] | |
cam_view_proj = cam_view @ self.proj_matrix # [V, 4, 4] | |
cam_pos = - cam_poses[:, :3, 3] # [V, 3] | |
results['cam_view'] = cam_view | |
results['cam_view_proj'] = cam_view_proj | |
results['cam_pos'] = cam_pos | |
return results |