streamlit-demo / app.py
eagle0504's picture
Update app.py
6d24aae verified
import os
import openai
import streamlit as st
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.llms import OpenAI as l_OpenAI
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
from helpers.foundation_models import *
import requests
# API Keys
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
SERPAPI_API_KEY = os.environ["SERPAPI_API_KEY"]
openai_client = openai.OpenAI(api_key=OPENAI_API_KEY)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Sidebar
st.sidebar.markdown(
r"""
# 🌟 Streamlit + Hugging Face Demo πŸ€–
## Introduction πŸ“–
This demo showcases how to interact with Large Language Models (LLMs) on Hugging Face using Streamlit.
"""
)
option = st.sidebar.selectbox(
"Which task do you want to do?",
("Sentiment Analysis", "Medical Summarization", "Llama2 on YSA", "Llama2 on BRK Letters", "ChatGPT", "ChatGPT (with Google)"),
)
clear_button = st.sidebar.button("Clear Conversation", key="clear")
st.sidebar.write("---")
st.sidebar.markdown("Yiqiao Yin: [Site](https://www.y-yin.io/) | [LinkedIn](https://www.linkedin.com/in/yiqiaoyin/)")
st.sidebar.markdown(
r"""
To fine-tune LLM such as Llama2 on custom data, please use the following tutorials as resources. For the options above such as `Llama2 on YSA` and `Llama2 on BRK Letters`, they are developed based on the content of the following videos.
## Video Series Overview
### Video 1: Process Your Own PDF Doc into LLM Finetune-Ready Format
Learn how to transform PDF documents into AI model fine-tuning ready formats. This video will take you through the steps to make your PDF data AI-ready.
- [Watch Video](https://youtu.be/hr2kSC1evQM)
- [Tutorial Notebook](https://github.com/yiqiao-yin/WYNAssociates/blob/main/docs/ref-deeplearning/ex24f%20-%20process%20custom%20data%20from%20pdf%20and%20push%20to%20huggingface%20to%20prep%20for%20fine%20tune%20task%20of%20llama%202%20using%20lora.ipynb)
### Video 2: Fine-tune Llama2-7b LLM Using Custom Data
Dive into customizing the Llama-2 model with your unique dataset. This installment turns your data into a bespoke AI model.
- [Watch Video](https://youtu.be/tDkY2gpvylE)
- [Guide to Fine-Tuning](https://github.com/yiqiao-yin/WYNAssociates/blob/main/docs/ref-deeplearning/ex24f%20-%20fine%20tune%20Llama%202%20using%20ysa%20data%20in%20colab.ipynb)
### Video 3: Deploy Inference Endpoint on HuggingFace!
Discover how to make your AI model accessible to the world by deploying it on HuggingFace. This video turns your project into a global phenomenon.
- [Watch Video](https://youtu.be/382yy-mCeCA)
- [Deployment Guide](https://github.com/yiqiao-yin/WYNAssociates/blob/main/docs/ref-deeplearning/ex24f%20-%20inference%20endpoint%20interaction%20from%20huggingface.ipynb)
- [HuggingFace Space](https://huggingface.co/spaces/eagle0504/streamlit-demo)
"""
)
# Reset everything
if clear_button:
st.session_state.messages = []
# React to user input
if prompt := st.chat_input("What is up?"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Execute options
with st.spinner("Wait for it..."):
if option == "Sentiment Analysis":
pipe_sentiment_analysis = pipeline("sentiment-analysis")
if prompt:
out = pipe_sentiment_analysis(prompt)
final_response = f"""
Prompt: {prompt}
Sentiment: {out[0]["label"]}
Score: {out[0]["score"]}
"""
elif option == "Medical Summarization":
pipe_summarization = pipeline(
"summarization", model="Falconsai/medical_summarization"
)
if prompt:
out = pipe_summarization(prompt)
final_response = out[0]["summary_text"]
elif option == "Llama2 on YSA":
if prompt:
try:
out = llama2_7b_ysa(prompt)
engineered_prompt = f"""
The user asked the question: {prompt}
We have found relevant content: {out}
Answer the user question based on the above content in paragraphs.
"""
final_response = call_chatgpt(query=engineered_prompt)
except:
final_response = "Sorry, the inference endpoint is temporarily down. πŸ˜”"
elif option == "Llama2 on BRK Letters":
if prompt:
try:
out = llama2_7b_brk_letters(prompt)
engineered_prompt = f"""
The user asked the question: {prompt}
We have found relevant content: {out}
Answer the user question based on the above content in paragraphs.
"""
final_response = call_chatgpt(query=engineered_prompt)
except:
final_response = "Sorry, the inference endpoint is temporarily down. πŸ˜”"
elif option == "ChatGPT":
if prompt:
out = call_chatgpt(query=prompt)
final_response = out
elif option == "ChatGPT (with Google)":
if prompt:
ans_langchain = call_langchain(prompt)
prompt = f"""
Based on the internet search results: {ans_langchain};
Answer the user question: {prompt}
"""
out = call_chatgpt(query=prompt)
final_response = out
else:
final_response = ""
response = f"{final_response}"
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})