Spaces:
Runtime error
Runtime error
import time | |
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union | |
from langchain.agents import AgentExecutor | |
from langchain.agents.agent import ExceptionTool | |
from langchain.agents.tools import InvalidTool | |
from langchain.callbacks.manager import CallbackManagerForChainRun | |
from langchain_core.agents import AgentAction, AgentFinish, AgentStep | |
from langchain_core.exceptions import OutputParserException | |
from langchain_core.pydantic_v1 import root_validator | |
from langchain_core.tools import BaseTool | |
from langchain_core.utils.input import get_color_mapping | |
from crewai.agents.cache.cache_hit import CacheHit | |
from crewai.tools.cache_tools import CacheTools | |
from crewai.utilities import I18N | |
class CrewAgentExecutor(AgentExecutor): | |
i18n: I18N = I18N() | |
iterations: int = 0 | |
request_within_rpm_limit: Any = None | |
max_iterations: Optional[int] = 15 | |
force_answer_max_iterations: Optional[int] = None | |
def set_force_answer_max_iterations(cls, values: Dict) -> Dict: | |
values["force_answer_max_iterations"] = values["max_iterations"] - 2 | |
return values | |
def _should_force_answer(self) -> bool: | |
return True if self.iterations == self.force_answer_max_iterations else False | |
def _force_answer(self, output: AgentAction): | |
return AgentStep( | |
action=output, observation=self.i18n.errors("force_final_answer") | |
) | |
def _call( | |
self, | |
inputs: Dict[str, str], | |
run_manager: Optional[CallbackManagerForChainRun] = None, | |
) -> Dict[str, Any]: | |
"""Run text through and get agent response.""" | |
# Construct a mapping of tool name to tool for easy lookup | |
name_to_tool_map = {tool.name: tool for tool in self.tools} | |
# We construct a mapping from each tool to a color, used for logging. | |
color_mapping = get_color_mapping( | |
[tool.name for tool in self.tools], excluded_colors=["green", "red"] | |
) | |
intermediate_steps: List[Tuple[AgentAction, str]] = [] | |
# Let's start tracking the number of iterations and time elapsed | |
self.iterations = 0 | |
time_elapsed = 0.0 | |
start_time = time.time() | |
# We now enter the agent loop (until it returns something). | |
while self._should_continue(self.iterations, time_elapsed): | |
if not self.request_within_rpm_limit or self.request_within_rpm_limit(): | |
next_step_output = self._take_next_step( | |
name_to_tool_map, | |
color_mapping, | |
inputs, | |
intermediate_steps, | |
run_manager=run_manager, | |
) | |
if isinstance(next_step_output, AgentFinish): | |
return self._return( | |
next_step_output, intermediate_steps, run_manager=run_manager | |
) | |
intermediate_steps.extend(next_step_output) | |
if len(next_step_output) == 1: | |
next_step_action = next_step_output[0] | |
# See if tool should return directly | |
tool_return = self._get_tool_return(next_step_action) | |
if tool_return is not None: | |
return self._return( | |
tool_return, intermediate_steps, run_manager=run_manager | |
) | |
self.iterations += 1 | |
time_elapsed = time.time() - start_time | |
output = self.agent.return_stopped_response( | |
self.early_stopping_method, intermediate_steps, **inputs | |
) | |
return self._return(output, intermediate_steps, run_manager=run_manager) | |
def _iter_next_step( | |
self, | |
name_to_tool_map: Dict[str, BaseTool], | |
color_mapping: Dict[str, str], | |
inputs: Dict[str, str], | |
intermediate_steps: List[Tuple[AgentAction, str]], | |
run_manager: Optional[CallbackManagerForChainRun] = None, | |
) -> Iterator[Union[AgentFinish, AgentAction, AgentStep]]: | |
"""Take a single step in the thought-action-observation loop. | |
Override this to take control of how the agent makes and acts on choices. | |
""" | |
try: | |
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps) | |
# Call the LLM to see what to do. | |
output = self.agent.plan( | |
intermediate_steps, | |
callbacks=run_manager.get_child() if run_manager else None, | |
**inputs, | |
) | |
if self._should_force_answer(): | |
if isinstance(output, AgentAction) or isinstance(output, AgentFinish): | |
output = output | |
elif isinstance(output, CacheHit): | |
output = output.action | |
else: | |
raise ValueError( | |
f"Unexpected output type from agent: {type(output)}" | |
) | |
yield self._force_answer(output) | |
return | |
except OutputParserException as e: | |
if isinstance(self.handle_parsing_errors, bool): | |
raise_error = not self.handle_parsing_errors | |
else: | |
raise_error = False | |
if raise_error: | |
raise ValueError( | |
"An output parsing error occurred. " | |
"In order to pass this error back to the agent and have it try " | |
"again, pass `handle_parsing_errors=True` to the AgentExecutor. " | |
f"This is the error: {str(e)}" | |
) | |
text = str(e) | |
if isinstance(self.handle_parsing_errors, bool): | |
if e.send_to_llm: | |
observation = str(e.observation) | |
text = str(e.llm_output) | |
else: | |
observation = "Invalid or incomplete response" | |
elif isinstance(self.handle_parsing_errors, str): | |
observation = self.handle_parsing_errors | |
elif callable(self.handle_parsing_errors): | |
observation = self.handle_parsing_errors(e) | |
else: | |
raise ValueError("Got unexpected type of `handle_parsing_errors`") | |
output = AgentAction("_Exception", observation, text) | |
if run_manager: | |
run_manager.on_agent_action(output, color="green") | |
tool_run_kwargs = self.agent.tool_run_logging_kwargs() | |
observation = ExceptionTool().run( | |
output.tool_input, | |
verbose=self.verbose, | |
color=None, | |
callbacks=run_manager.get_child() if run_manager else None, | |
**tool_run_kwargs, | |
) | |
if self._should_force_answer(): | |
yield self._force_answer(output) | |
return | |
yield AgentStep(action=output, observation=observation) | |
return | |
# If the tool chosen is the finishing tool, then we end and return. | |
if isinstance(output, AgentFinish): | |
yield output | |
return | |
# Override tool usage to use CacheTools | |
if isinstance(output, CacheHit): | |
cache = output.cache | |
action = output.action | |
tool = CacheTools(cache_handler=cache).tool() | |
output = action.copy() | |
output.tool_input = f"tool:{action.tool}|input:{action.tool_input}" | |
output.tool = tool.name | |
name_to_tool_map[tool.name] = tool | |
color_mapping[tool.name] = color_mapping[action.tool] | |
actions: List[AgentAction] | |
actions = [output] if isinstance(output, AgentAction) else output | |
yield from actions | |
for agent_action in actions: | |
if run_manager: | |
run_manager.on_agent_action(agent_action, color="green") | |
# Otherwise we lookup the tool | |
if agent_action.tool in name_to_tool_map: | |
tool = name_to_tool_map[agent_action.tool] | |
return_direct = tool.return_direct | |
color = color_mapping[agent_action.tool] | |
tool_run_kwargs = self.agent.tool_run_logging_kwargs() | |
if return_direct: | |
tool_run_kwargs["llm_prefix"] = "" | |
# We then call the tool on the tool input to get an observation | |
observation = tool.run( | |
agent_action.tool_input, | |
verbose=self.verbose, | |
color=color, | |
callbacks=run_manager.get_child() if run_manager else None, | |
**tool_run_kwargs, | |
) | |
else: | |
tool_run_kwargs = self.agent.tool_run_logging_kwargs() | |
observation = InvalidTool().run( | |
{ | |
"requested_tool_name": agent_action.tool, | |
"available_tool_names": list(name_to_tool_map.keys()), | |
}, | |
verbose=self.verbose, | |
color=None, | |
callbacks=run_manager.get_child() if run_manager else None, | |
**tool_run_kwargs, | |
) | |
yield AgentStep(action=agent_action, observation=observation) | |