Spaces:
Runtime error
Runtime error
import streamlit as st | |
import requests | |
import json | |
import os | |
import pandas as pd | |
from sentence_transformers import CrossEncoder | |
import numpy as np | |
import re | |
# Credentials ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
corpus_id = os.environ['VECTARA_CORPUS_ID'] | |
customer_id = os.environ['VECTARA_CUSTOMER_ID'] | |
api_key = os.environ['VECTARA_API_KEY'] | |
# Get Data +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
def get_post_headers() -> dict: | |
"""Returns headers that should be attached to each post request.""" | |
return { | |
"x-api-key": api_key, | |
"customer-id": customer_id, | |
"Content-Type": "application/json", | |
} | |
def query_vectara(query: str, case_number: int, filter_str="", lambda_val=0.0) -> str: | |
corpus_key = { | |
"customerId": customer_id, | |
"corpusId": corpus_id, | |
"lexicalInterpolationConfig": {"lambda": lambda_val}, | |
} | |
if filter_str: | |
corpus_key["metadataFilter"] = filter_str | |
data = { | |
"query": [ | |
{ | |
"query": query, | |
"start": 0, | |
"numResults": 10, | |
"contextConfig": { | |
"sentencesBefore": 2, | |
"sentencesAfter": 2 | |
}, | |
"corpusKey": [corpus_key], | |
"summary": [ | |
{ | |
"responseLang": "eng", | |
"maxSummarizedResults": 5, | |
"summarizerPromptName": "vectara-summary-ext-v1.2.0" | |
}, | |
] | |
} | |
] | |
} | |
response = requests.post( | |
headers=get_post_headers(), | |
url="https://api.vectara.io/v1/query", | |
data=json.dumps(data), | |
timeout=130, | |
) | |
if response.status_code != 200: | |
st.error(f"Query failed (code {response.status_code}, reason {response.reason}, details {response.text})") | |
return "" | |
result = response.json() | |
answer = result["responseSet"][0]["summary"][0]["text"] | |
return re.sub(r'\[\d+(,\d+){0,5}\]', '', answer) | |
# Streamlit UI | |
st.title('Vectara Query Interface') | |
# Dropdown for selecting case number | |
case_number = st.selectbox("Select Case Number:", range(2001, 2100), format_func=lambda x: f"\"Case Number\": {x}") | |
# User input for query | |
user_query = st.text_input("Enter your query:", "" ) | |
# Advanced options | |
st.sidebar.header("Advanced Options") | |
filter_str = st.sidebar.text_input("Filter String:", "") | |
lambda_val = st.sidebar.slider("Lambda Value:", min_value=0.0, max_value=1.0, value=0.025) | |
if st.button('Search'): | |
if user_query: | |
with st.spinner('Querying Vectara...'): | |
output = query_vectara(user_query, case_number, filter_str, lambda_val) | |
st.markdown("## Result") | |
st.write(output) | |
else: | |
st.error("Please enter a query to search.") | |
# Initialize the HHEM model +++++++++++++++++++++++++++++++++++++++++++++++ | |
model = CrossEncoder('vectara/hallucination_evaluation_model') | |
# Function to compute HHEM scores | |
def compute_hhem_scores(texts, summary): | |
pairs = [[text, summary] for text in texts] | |
scores = model.predict(pairs) | |
return scores | |
# Define the Vectara query function | |
def vectara_query(query: str, config: dict): | |
corpus_key = [{ | |
"customerId": config["customer_id"], | |
"corpusId": config["corpus_id"], | |
"lexicalInterpolationConfig": {"lambda": config.get("lambda_val", 0.5)}, | |
}] | |
data = { | |
"query": [{ | |
"query": query, | |
"start": 0, | |
"numResults": config.get("top_k", 10), | |
"contextConfig": { | |
"sentencesBefore": 2, | |
"sentencesAfter": 2, | |
}, | |
"corpusKey": corpus_key, | |
"summary": [{ | |
"responseLang": "eng", | |
"maxSummarizedResults": 5, | |
}] | |
}] | |
} | |
headers = { | |
"x-api-key": config["api_key"], | |
"customer-id": config["customer_id"], | |
"Content-Type": "application/json", | |
} | |
response = requests.post( | |
headers=headers, | |
url="https://api.vectara.io/v1/query", | |
data=json.dumps(data), | |
) | |
if response.status_code != 200: | |
st.error(f"Query failed (code {response.status_code}, reason {response.reason}, details {response.text})") | |
return [], "" | |
result = response.json() | |
responses = result["responseSet"][0]["response"] | |
summary = result["responseSet"][0]["summary"][0]["text"] | |
res = [[r['text'], r['score']] for r in responses] | |
return res, summary | |
# Streamlit UI setup | |
st.title("Vectara Content Query Interface") | |
# User inputs | |
query = st.text_input("Enter your query here", "") | |
lambda_val = st.slider("Lambda Value", min_value=0.0, max_value=1.0, value=0.5) | |
top_k = st.number_input("Top K Results", min_value=1, max_value=50, value=10) | |
if st.button("Query Vectara"): | |
config = { | |
"api_key": os.environ.get("VECTARA_API_KEY", ""), | |
"customer_id": os.environ.get("VECTARA_CUSTOMER_ID", ""), | |
"corpus_id": os.environ.get("VECTARA_CORPUS_ID", ""), | |
"lambda_val": lambda_val, | |
"top_k": top_k, | |
} | |
results, summary = vectara_query(query, config) | |
if results: | |
st.subheader("Summary") | |
st.write(summary) | |
st.subheader("Top Results") | |
# Extract texts from results | |
texts = [r[0] for r in results[:5]] | |
# Compute HHEM scores | |
scores = compute_hhem_scores(texts, summary) | |
# Prepare and display the dataframe | |
df = pd.DataFrame({'Fact': texts, 'HHEM Score': scores}) | |
st.dataframe(df) | |
else: | |
st.write("No results found.") | |