# Import necessary libraries import streamlit as st import autogen from autogen.agentchat.contrib.math_user_proxy_agent import MathUserProxyAgent # Function to run the query def run_query(math_problem, api_key): config_list = [ { 'model': 'gpt-3.5-turbo', 'api_key': api_key, }, ] autogen.ChatCompletion.start_logging() assistant = autogen.AssistantAgent( name="assistant", system_message="You are a helpful assistant.", llm_config={ "request_timeout": 600, "seed": 42, "config_list": config_list, } ) mathproxyagent = MathUserProxyAgent( name="mathproxyagent", human_input_mode="NEVER", code_execution_config={"use_docker": False}, ) return mathproxyagent.initiate_chat(assistant, problem=math_problem) # Streamlit app st.title('Math Problem Solver') # Input fields for API key and math problem api_key = st.text_input("Enter your API Key:") math_problem = st.text_input("Enter your math problem:") # When the button is pressed, call run_query and display the result if st.button('Solve'): if api_key and math_problem: result = run_query(math_problem, api_key) st.write(result) else: st.write("Please provide both API key and math problem.")