Spaces:
Sleeping
Sleeping
import streamlit as st | |
import plotly.express as px | |
import pandas as pd | |
import streamlit_authenticator as stauth | |
import yaml | |
from yaml.loader import SafeLoader | |
import plotly.graph_objects as go | |
from transformers import pipeline | |
from PIL import Image, ImageDraw | |
from backend import * | |
# Start of Streamlit App | |
st.set_page_config(layout="centered") | |
hide_streamlit_style = ''' | |
<style> | |
#MainMenu {visibility: show;} | |
footer {visibility: hidden;} | |
</style> | |
''' | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
# Function to initialise object_detection model | |
def initialise_object_detection_model(): | |
checkpoint = "google/owlvit-base-patch32" | |
detector = pipeline(model=checkpoint, task="zero-shot-object-detection") | |
return detector | |
# Function to get result from object detection | |
def get_object_detection_results(detector, image_path, object_labels): | |
image = Image.open(image_path) | |
predictions = detector( | |
image, | |
candidate_labels=object_labels, | |
) | |
draw = ImageDraw.Draw(image) | |
for prediction in predictions: | |
box = prediction["box"] | |
label = prediction["label"] | |
score = prediction["score"] | |
xmin, ymin, xmax, ymax = box.values() | |
draw.rectangle((xmin, ymin, xmax, ymax), outline="red", width=1) | |
draw.text((xmin, ymin), f"{label}: {round(score,2)}", fill="white") | |
return image | |
detector = initialise_object_detection_model() | |
# Import configuration file for user authentication | |
with open('credentials.yaml') as file: | |
config = yaml.load(file, Loader=SafeLoader) | |
# Create an authentication object. | |
authenticator = stauth.Authenticate( | |
config['credentials'], | |
config['cookie']['name'], | |
config['cookie']['key'], | |
config['cookie']['expiry_days'] | |
) | |
# List of advanced users | |
advanced_users = ['advanced'] | |
# Landing page if user not logged in | |
if st.session_state['authentication_status'] is None: | |
# Landing page copy and banner | |
st.markdown('<h1 style="text-align: left;">Fly Situation Monitoring App 🪰</h1>', unsafe_allow_html=True) | |
st.markdown('<h4 style="text-align: left;">Keeping You Informed, Keeping Flies at Bay</h4>', unsafe_allow_html=True) | |
st.write('\n') | |
st.write('\n') | |
# Loging log-in details | |
name, authentication_status, username = authenticator.login('', 'main') | |
# If log-in failed | |
if st.session_state['authentication_status'] is False: | |
st.error('Username/password is incorrect.') | |
st.write('\n') | |
st.write('\n') | |
# App if user is logged in and authenticated | |
if st.session_state['authentication_status']: | |
# Streamlit app start | |
st.title("Fly Situation Monitoring App 🪰") | |
st.markdown("Keeping You Informed, Keeping Flies at Bay") | |
st.write('\n') | |
# User selects a canteen | |
canteen = st.selectbox("Select a Canteen:", options=["Deck", "Frontier"]) | |
st.write('\n') | |
# If user is a student, show basic app layout | |
if not st.session_state['username'] in advanced_users: | |
# Tabs | |
tab1, tab2, tab3 = st.tabs(["Current", "History", "FAQ"]) | |
# Tab 1: Fly Situation | |
with tab1: | |
st.header("Current Fly Situation") | |
# Get data | |
fly_situation, delta1, delta2, delta3 = get_fly_situation(canteen) | |
# Display key information using cards | |
col1_fly_curr, col2_fly_curr, col3_fly_curr = st.columns(3) | |
col1_fly_curr.metric("Temperature", str(fly_situation["temperature"]) + " °C", delta=delta1) | |
col2_fly_curr.metric("Humidty", str(fly_situation["humidity"]) + " %", delta=delta2) | |
col3_fly_curr.metric("Fly Count", str(fly_situation["fly_count"]), delta=delta3, delta_color="inverse") | |
st.caption("Last updated at " + fly_situation["last_updated"] + " (5 min intervals)") | |
# Alert level | |
if fly_situation["fly_count"] > 20: | |
alert_level = "High 🔴" | |
alert_colour = "red" | |
elif fly_situation["fly_count"] > 10: | |
alert_level = "Moderate 🟠" | |
alert_colour = "orange" | |
else: | |
alert_level = "Low 🟢" | |
alert_colour = "green" | |
st.markdown(f"<h2 style='color:{alert_colour}; text-align: left'>Alert Level: {alert_level}</h3>", unsafe_allow_html=True) | |
st.markdown('---') | |
# Camera locations | |
st.header("Smart Sensor Locations") | |
camera_locations = get_camera_locations(canteen) | |
st.map(camera_locations, size='size', zoom=18) | |
st.markdown('---') | |
# Feedback | |
st.header("Feedback") | |
# Gather feedback | |
feedback_col1, feedback_col2 = st.columns(2) | |
with feedback_col1: | |
user_feedback = st.text_area("Provide Feedback on the Fly Situation:") | |
with feedback_col2: | |
uploaded_files = st.file_uploader("Upload a Photo", accept_multiple_files=True, type=['jpg', 'png']) | |
for uploaded_file in uploaded_files: | |
st.image(uploaded_file) | |
if st.button("Submit Feedback"): | |
st.success("Feedback submitted successfully!") | |
st.write('\n') | |
st.write('\n') | |
st.write('\n') | |
# Tab 2: History | |
with tab2: | |
st.subheader("Fly Count Over Time") | |
# Get history data | |
fly_situation_history = get_fly_situation_history(canteen) | |
# Create a DataFrame for the time series data | |
df = pd.DataFrame(fly_situation_history) | |
sum_by_timestamp = df.groupby('timestamp')['fly_count'].sum().reset_index() | |
sum_by_timestamp["timestamp"] = pd.to_datetime(sum_by_timestamp["timestamp"]) | |
# Plot the time series using Plotly Express | |
fig = px.line(sum_by_timestamp, x="timestamp", y="fly_count", labels={"fly_count": "Fly Count", "timestamp": "Timestamp"}) | |
st.plotly_chart(fig) | |
# Question-and-Answer | |
with st.form("form"): | |
prompt = st.text_input("Ask a Question:") | |
submit = st.form_submit_button("Submit") | |
if prompt: | |
pass | |
#with st.spinner("Generating..."): | |
# Tab 3: FAQ | |
with tab3: | |
st.header("Frequently Asked Questions") | |
with st.expander("What is this app about?"): | |
st.write("This app provides you real-time information on fly activity by the smart fly monitoring system.") | |
with st.expander("How do the sensors work/detect fly activity?"): | |
st.write("The sensors built into the fly traps leverages cutting-edge AI methodologies for advanced fly detection.") | |
st.write("1) Object Detection - Using OWL-ViT, an open-vocabulary object detector, we can finetune the model specifically to recognise flies.") | |
st.write('\n') | |
st.write('\n') | |
st.write("Try OWL-ViT:") | |
object_labels = st.text_input("Enter your labels for the model to detect (comma-separated)", value="insect") | |
labels = object_labels.split(", ") | |
image_file = st.file_uploader("Upload an image", type=["jpg", "png"]) | |
demo_image = st.checkbox("Load in demo image") | |
if image_file: | |
st.write('Before:') | |
st.image(image_file) | |
if image_file and object_labels: | |
st.write('After:') | |
with st.spinner("Detecting"): | |
st.image(image = get_object_detection_results(detector, image_file, labels)) | |
if demo_image: | |
st.write('Before:') | |
st.image("images/fly.jpg") | |
if demo_image and object_labels: | |
st.write('After:') | |
with st.spinner("Detecting"): | |
st.image(image = get_object_detection_results(detector, "images/fly.jpg", labels)) | |
st.write('\n') | |
st.write('\n') | |
st.write("2) Behaviour Analysis - By comparing consecutive frames, the system can extract data such as the trajectory, speed, and direction of each fly's movement. Training the system on these data can improve the system's detection of flies.") | |
trajectory_data = pd.DataFrame({ | |
'X': [1, 2, 3, 4, 5], | |
'Y': [10, 25, 20, 25, 30], | |
'Timestamp': pd.date_range('2023-01-01', '2023-01-05', freq='D') | |
}) | |
# Create a Plotly figure | |
fig = go.Figure() | |
# Add a trace for the trajectory | |
fig.add_trace(go.Scatter(x=trajectory_data['X'], y=trajectory_data['Y'], mode='lines')) | |
# Update layout | |
fig.update_layout( | |
xaxis_title='X-Coordinate', | |
yaxis_title='Y-Coordinate', | |
title='Example of a Fly Trajectory' | |
) | |
# Display the Plotly figure | |
st.plotly_chart(fig, use_container_width=True) | |
st.write('\n') | |
st.write('\n') | |
st.write('3) Training Augmentation - The fly detection system employs generative adversial networks, which generates synthetic fly images for training the fly detection model. This makes the system more robust at detecting flies in all scenarios.') | |
with st.expander("How accurate is the fly detection in the system?"): | |
st.write("The system is still in experimental phase.") | |
with st.expander("How often is the data updated or refreshed in real-time?"): | |
st.write("5 minute intervals.") | |
with st.expander("Why do I hear some sounds coming out from the fly traps?"): | |
st.write("The fly traps are built to emit accoustic sounds to attract flies.") | |
with st.expander("The traps seem to release some gas. What is that?"): | |
st.write("The fly traps release non-toxic pheremones that attract flies.") | |
# Logout | |
logout_col1, logout_col2 = st.columns([6,1]) | |
with logout_col2: | |
st.write('\n') | |
st.write('\n') | |
st.write('\n') | |
authenticator.logout('Logout', 'main') | |
# Footer Credits | |
st.markdown('##') | |
st.markdown("---") | |
st.markdown("Created with ❤️ by HS2912 W4 Group 2") | |
else: | |
# Tabs | |
tab1, tab2, tab3 = st.tabs(["Current", "History", "Control System"]) | |
# Tab 1: Fly Situation | |
with tab1: | |
st.header("Current Fly Situation") | |
# Get current data | |
fly_situation, delta1, delta2, delta3 = get_fly_situation(canteen) | |
# Display key information using cards | |
col1_fly_curr, col2_fly_curr, col3_fly_curr = st.columns(3) | |
col1_fly_curr.metric("Temperature", str(fly_situation["temperature"]) + " °C", delta=delta1) | |
col2_fly_curr.metric("Humidty", str(fly_situation["humidity"]) + " %", delta=delta2) | |
col3_fly_curr.metric("Fly Count", str(fly_situation["fly_count"]), delta=delta3, delta_color="inverse") | |
st.caption("Last updated at " + fly_situation["last_updated"] + " (5 min intervals)") | |
# Alert | |
if fly_situation["fly_count"] > 20: | |
alert_level = "High 🔴" | |
alert_colour = "red" | |
elif fly_situation["fly_count"] > 10: | |
alert_level = "Moderate 🟠" | |
alert_colour = "orange" | |
else: | |
alert_level = "Low 🟢" | |
alert_colour = "green" | |
st.markdown(f"<h2 style='color:{alert_colour}; text-align: left'>Alert Level: {alert_level}</h3>", unsafe_allow_html=True) | |
st.markdown('---') | |
# Camera locations | |
st.header("Smart Sensor Locations") | |
camera_locations = get_camera_locations(canteen) | |
st.map(camera_locations, size='size', zoom=18) | |
st.markdown('---') | |
# Feedback | |
st.header("Feedback") | |
# Gather feedback | |
feedback_col1, feedback_col2 = st.columns(2) | |
with feedback_col1: | |
user_feedback = st.text_area("Provide Feedback on the Fly Situation:") | |
with feedback_col2: | |
uploaded_files = st.file_uploader("Upload a Photo", accept_multiple_files=True, type=['jpg', 'png']) | |
for uploaded_file in uploaded_files: | |
st.image(uploaded_file) | |
if st.button("Submit Feedback"): | |
st.success("Feedback submitted successfully!") | |
st.write('\n') | |
st.write('\n') | |
st.write('\n') | |
# Tab 2: History | |
with tab2: | |
# Fly count over time | |
st.subheader("Fly Count Over Time") | |
# Select sensor | |
selected_sensor = st.selectbox("Select Sensor:", ["All", "Sensor 1", "Sensor 2", "Sensor 3"]) | |
# Get history data | |
fly_situation_history = get_fly_situation_history(canteen) | |
# Create a DataFrame for the time series data | |
df = pd.DataFrame(fly_situation_history) | |
if selected_sensor != "All": | |
df = df[df["sensor"]==int(selected_sensor[-1])] | |
sum_by_timestamp = df.groupby('timestamp')['fly_count'].sum().reset_index() | |
sum_by_timestamp["timestamp"] = pd.to_datetime(sum_by_timestamp["timestamp"]) | |
# Plot the time series using Plotly Express | |
fig = px.line(sum_by_timestamp, x="timestamp", y="fly_count", labels={"fly_count": "Fly Count", "timestamp": "Timestamp"}) | |
st.plotly_chart(fig) | |
# Pheremones level | |
st.subheader("Pheremone Level Over Time") | |
selected_sensor_level = st.selectbox("Select Sensor:", ["Sensor 1", "Sensor 2", "Sensor 3"]) | |
# Get history data | |
sensor_pheremone_history = get_pheremone_levels(selected_sensor_level) | |
pheremone_df = pd.DataFrame(sensor_pheremone_history) | |
pheremone_df = pheremone_df[pheremone_df["sensor"] == int(selected_sensor_level[-1])] | |
pheremone_df['timestamp'] = pd.to_datetime(pheremone_df['timestamp']) | |
# Plot the time series using Plotly Express | |
fig = px.line(pheremone_df, x="timestamp", y="pheremone_level", labels={"pheremone_level": "Pheremone Level", "timestamp": "Timestamp"}) | |
st.plotly_chart(fig) | |
# Question-and-Answer | |
with st.form("form"): | |
prompt = st.text_input("Ask a Question:") | |
submit = st.form_submit_button("Submit") | |
if prompt: | |
with st.spinner("Generating..."): | |
pass | |
# Tab 3: Control System | |
with tab3: | |
# Enable/disable automatic pest control system | |
st.header("System Settings") | |
automatic_control_enabled = st.toggle("Enable Automatic Pest Control", value=True) | |
st.write('\n') | |
st.write('\n') | |
if not automatic_control_enabled: | |
disabled = False | |
else: | |
disabled = True | |
# Camera | |
st.subheader("Smart Camera/Sensors") | |
sensor1 = st.toggle("Enable Sensor 1", value=True, disabled=disabled, key='deck_sensor_1') | |
sensor2 = st.toggle("Enable Sensor 2", value=True, disabled=disabled, key='deck_sensor_2') | |
sensor3 = st.toggle("Enable Sensor 3", value=True, disabled=disabled, key='deck_sensor_3') | |
st.write('\n') | |
# Audio | |
st.subheader("Audio") | |
# Accoustic | |
accoustic = st.selectbox("Accoustic Audio", ["Audio 1", "Audio 2", "Audio 3"], disabled=disabled) | |
st.write('\n') | |
# Pheremones | |
# Time interval for pheremones discharge in minutes) | |
st.subheader("Pheremones") | |
pheremones_interval = st.slider("Pheremones Discharge Interval (minutes)", min_value=5, max_value=60, value=15, step=5, disabled=disabled) | |
st.write('\n') | |
# Alerts | |
st.subheader('Alerts') | |
# Pest activity threshold for alerts | |
pest_activity_threshold = st.slider("Fly Count Threshold to Send Out Alerts", min_value=0, max_value=100, value=30, step=5, disabled=disabled) | |
st.write('\n') | |
# Instant alerts for pest sightings or unusual activity | |
st.markdown('<h5>Instant alert</h3>', unsafe_allow_html=True) | |
if st.button("Send Pest Alert", disabled=disabled): | |
st.success("Pest alert sent!") | |
st.write('\n') | |
# Notifications for upcoming preventive measures or scheduled treatments | |
st.markdown('<h5>Schedule notification for upcoming treatment day</h3>', unsafe_allow_html=True) | |
upcoming_event_date = st.date_input("Schedule Date", disabled=disabled) | |
upcoming_event_time = st.time_input("Set time for alert", disabled=disabled) | |
if st.button("Schedule Notification", disabled=disabled): | |
st.success(f"Notification scheduled for {upcoming_event_date} {upcoming_event_time}") | |
# Logout | |
logout_col1, logout_col2 = st.columns([6,1]) | |
with logout_col2: | |
st.write('\n') | |
st.write('\n') | |
st.write('\n') | |
authenticator.logout('Logout', 'main') | |
# Footer Credits | |
st.markdown('##') | |
st.markdown("---") | |
st.markdown("Created with ❤️ by HS2912 W4 Group 2") | |