File size: 4,736 Bytes
301b1c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import logging
import os
from typing import Callable, Optional

from torchvision.datasets import ImageFolder
from torchvision.datasets.utils import check_integrity, download_and_extract_archive, verify_str_arg

_logger = logging.getLogger(__name__)


class ImageNetA(ImageFolder):
    """ImageNetA dataset.

    - Paper: [https://arxiv.org/abs/1907.07174](https://arxiv.org/abs/1907.07174).
    """

    base_folder = "imagenet-a"
    url = "https://people.eecs.berkeley.edu/~hendrycks/imagenet-a.tar"
    filename = "imagenet-a.tar"
    tgz_md5 = "c3e55429088dc681f30d81f4726b6595"

    def __init__(self, root: str, split=None, transform: Optional[Callable] = None, download: bool = False, **kwargs):
        self.root = root

        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError("Dataset not found or corrupted." + " You can use download=True to download it")

        super().__init__(root=os.path.join(root, self.base_folder), transform=transform, **kwargs)

    def _check_exists(self) -> bool:
        return os.path.exists(os.path.join(self.root, self.base_folder))

    def _check_integrity(self) -> bool:
        return check_integrity(os.path.join(self.root, self.filename), self.tgz_md5)

    def download(self) -> None:
        if self._check_integrity() and self._check_exists():
            _logger.debug("Files already downloaded and verified")
            return
        download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)


class ImageNetO(ImageNetA):
    """ImageNetO datasets.

    Contains unknown classes to ImageNet-1k.


    - Paper: [https://arxiv.org/abs/1907.07174](https://arxiv.org/abs/1907.07174)
    """

    base_folder = "imagenet-o"
    url = "https://people.eecs.berkeley.edu/~hendrycks/imagenet-o.tar"
    filename = "imagenet-o.tar"
    tgz_md5 = "86bd7a50c1c4074fb18fc5f219d6d50b"


class ImageNetR(ImageNetA):
    """ImageNet-R(endition) dataset.

    Contains art, cartoons, deviantart, graffiti, embroidery, graphics, origami, paintings,
    patterns, plastic objects,plush objects, sculptures, sketches, tattoos, toys,
    and video game renditions of ImageNet-1k classes.

    - Paper: [https://arxiv.org/abs/2006.16241](https://arxiv.org/abs/2006.16241)
    """

    base_folder = "imagenet-r"
    url = "https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar"
    filename = "imagenet-r.tar"
    tgz_md5 = "a61312130a589d0ca1a8fca1f2bd3337"


class NINCOFull(ImageFolder):
    """`NINCO` Dataset subset.

    Args:
        root (string): Root directory of dataset where directory
            exists or will be saved to if download is set to True.
        split (string, optional): The dataset split, not used.
        transform (callable, optional): A function/transform that takes in an PIL image
            and returns a transformed version. E.g, `transforms.RandomCrop`.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        **kwargs: Additional arguments passed to :class:`~torchvision.datasets.ImageFolder`.
    """

    PAPER_URL = "https://arxiv.org/pdf/2306.00826.pdf"
    base_folder = "ninco"
    filename = "NINCO_all.tar.gz"
    file_md5 = "b9ffae324363cd900a81ce3c367cd834"
    url = "https://zenodo.org/record/8013288/files/NINCO_all.tar.gz"
    # size: 15393

    def __init__(
        self, root: str, split=None, transform: Optional[Callable] = None, download: bool = False, **kwargs
    ) -> None:
        self.root = os.path.expanduser(root)
        self.dataset_folder = os.path.join(self.root, self.base_folder)
        self.archive = os.path.join(self.root, self.filename)

        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError("Dataset not found or corrupted." + " You can use download=True to download it")

        super().__init__(self.dataset_folder, transform=transform, **kwargs)

    def _check_integrity(self) -> bool:
        return check_integrity(self.archive, self.file_md5)

    def _check_exists(self) -> bool:
        return os.path.exists(self.dataset_folder)

    def download(self) -> None:
        if self._check_integrity() and self._check_exists():
            return
        download_and_extract_archive(
            self.url, download_root=self.root, extract_root=self.dataset_folder, md5=self.file_md5
        )


if __name__ == "__main__":
    ImageNetR(root="data", download=True)
    ImageNetO(root="data", download=True)
    ImageNetA(root="data", download=True)
    NINCOFull(root="data", download=True)