Linoy Tsaban commited on
Commit
6255790
·
1 Parent(s): 6908973

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -6
app.py CHANGED
@@ -4,11 +4,88 @@ import requests
4
  from io import BytesIO
5
  from diffusers import StableDiffusionPipeline
6
  from diffusers import DDIMScheduler
7
- from utils import hi
 
8
 
9
- def greet(name):
10
- # return "Hello " + name + "!!"
11
- return hi() +""+ name
 
 
12
 
13
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
14
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  from io import BytesIO
5
  from diffusers import StableDiffusionPipeline
6
  from diffusers import DDIMScheduler
7
+ from utils import *
8
+ from inversion_utils import *
9
 
10
+ model_id = "CompVis/stable-diffusion-v1-4"
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ sd_pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
13
+ sd_pipe.scheduler = DDIMScheduler.from_config(model_id, subfolder = "scheduler")
14
+ from torch import autocast, inference_mode
15
 
16
+ def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
17
+
18
+ # inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
19
+ # based on the code in https://github.com/inbarhub/DDPM_inversion
20
+
21
+ # returns wt, zs, wts:
22
+ # wt - inverted latent
23
+ # wts - intermediate inverted latents
24
+ # zs - noise maps
25
+
26
+ sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
27
+
28
+ # vae encode image
29
+ with autocast("cuda"), inference_mode():
30
+ w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
31
+
32
+ # find Zs and wts - forward process
33
+ wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
34
+ return wt, zs, wts
35
+
36
+
37
+
38
+ def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
39
+
40
+ # reverse process (via Zs and wT)
41
+ w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
42
+
43
+ # vae decode image
44
+ with autocast("cuda"), inference_mode():
45
+ x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
46
+ if x0_dec.dim()<4:
47
+ x0_dec = x0_dec[None,:,:,:]
48
+ img = image_grid(x0_dec)
49
+ return img
50
+
51
+
52
+
53
+
54
+ def edit(input_image, input_image_prompt, target_prompt, guidance_scale=15, skip=36, num_diffusion_steps=100):
55
+ offsets=(0,0,0,0)
56
+ x0 = load_512(input_image, *offsets, device)
57
+
58
+
59
+ # invert
60
+ wt, zs, wts = invert(x0 =x0 , prompt_src=input_image_prompt, num_diffusion_steps=num_diffusion_steps)
61
+ latnets = wts[skip].expand(1, -1, -1, -1)
62
+
63
+ eta = 1
64
+ #pure DDPM output
65
+ pure_ddpm_out = sample(wt, zs, wts, prompt_tar=target_prompt,
66
+ cfg_scale_tar=guidance_scale, skip=skip,
67
+ eta = eta)
68
+ return pure_ddpm_out
69
+
70
+
71
+ # See the gradio docs for the types of inputs and outputs available
72
+ inputs = [
73
+ gr.Image(label="input image", shape=(512, 512)),
74
+ gr.Textbox(label="input prompt"),
75
+ gr.Textbox(label="target prompt"),
76
+ gr.Slider(label="guidance_scale", minimum=7, maximum=18, value=15),
77
+ gr.Slider(label="skip", minimum=0, maximum=40, value=36),
78
+ gr.Slider(label="num_diffusion_steps", minimum=0, maximum=300, value=100),
79
+
80
+
81
+ ]
82
+ outputs = gr.Image(label="result")
83
+
84
+ # And the minimal interface
85
+ demo = gr.Interface(
86
+ fn=edit,
87
+ inputs=inputs,
88
+ outputs=outputs,
89
+ )
90
+
91
+ demo.launch()